
 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

ICCESD 2024_0759_1 

 

EMPLOYING THE GENERALIZED LASSO MODEL TO EVALUATE KEY 

DETERMINANTS OF LIVELIHOOD VULNERABILITY IN THE 

SOUTHWESTERN COASTAL BANGLADESH  

AnjumTasnuva*1 and Quazi Hamidul Bari 2  

1 Assistant Professor, Khulna University of Engineering & Technology 

(KUET), Institute of Disaster Management, Bangladesh, e-mail: tasnuva@idm.kuet.ac.bd 
2 Professor, Khulna University of Engineering & Technology 

(KUET), Department of Civil Engineering, Bangladesh, e-mail: qhbari@ce.kuet.ac.bd 

*Corresponding Author 

ABSTRACT 

Bangladesh is a disaster-prone country due to its geographical location, flat topography, and monsoon 

climate. The coastal zone is the most vulnerable part of Bangladesh due to the regular occurrence of 

natural disasters such cyclones, storm surges, floods, salinity, erosion, and waterlogging. This study 

employed the generalized Least Absolute Shrinkage and Selection Operator (LASSO) machine 

learning model to find out the key influential factors that make people vulnerable regarding their 

livelihoods. The study was carried out in Gabua Union, a remote region along the southwest coast. 

Initially, twenty-five livelihood vulnerability factors were chosen based on expert comments, field 

observations, and extensive literature review. Data collection involved field surveys with 

questionnaires, focus groups (FGD), and key informant interviews (KII), along with the utilization of 

satellite images and a digital elevation model (DEM). Various regularization techniques were tested, 

including Compact (0.0), LASSO (1.0), Ridge LASSO (1.1), and Ridge (2.0). Among these, Ridge 

(2.0) emerged as the top performer with the highest receiver operating characteristic (ROC) value of 

0.9493, utilizing 25 coefficients effectively. The high ROC value, 0.9493 and a classification 

accuracy, 87% additionally, the high precision (0.93), recall (0.87), F1 score (0.89), and specificity 

(0.87) together show that the model is good at its classification task and indicate the effectiveness of 

the generalized LASSO model in ranking key influential factors. Conversely, the models exhibited 

lower values for the overall misclassification rate (0.27791), the balance error rate (0.09467), and 

negative average log likelihood. These findings reinforce the superior performance of the models. The 

study identified the most crucial factors among the 25 influential livelihood vulnerability factors as 

proximity to the river, slope, distance from Kheya Ghat, height of rainfed water inundation, livelihood 

dependency on natural resources, normalized difference vegetation index (NVDI), distance from a 

potable water source, having a bank account, gardening at home, and dependency ratio are the most 

important ones. The study's outcomes can assist decision-makers in formulating more contextually 

effective initiatives and strategies. It may also contribute to national risk reduction policies and, in the 

same way, attain the objectives of the Sendai Framework and Sustainable Development Goals (SDG). 
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1. INTRODUCTION 

Globally, the consequences of hazards are rising unexpectedly because of climate change and the 

increasing exposure of communities and individuals (UNDRR, 2022). Rising temperatures, shifting 

precipitation patterns, sea-level rise, and the overall increasing trend of frequency and intensity of 

extreme weather events adversely affect agricultural output, quality and quantity of potable water, 

human well-being, and the environment, as indicated by Keutgen 2023; Yadava et al., 2023; Wheeler 

and Von Braun, 2013. Bangladesh is a disaster-prone country because of its geographical location, 

topography, multiplicity of rivers, and monsoon climate (Rahaman, 2023). The coastal area of 

Bangladesh is remarkably vulnerable, experiencing frequent climate-related disasters such as 

cyclones, storms, floods, salinity, erosion, and waterlogging (Asma and Kotani, 2021; Bari and 

Sayeed, 2023).  The coastal communities confront several challenges, including poverty, drinking 

water crisis, poor sanitation, roads, and health problems (Tasnuva et al., 2022). Additionally, the 

southwestern coast of Bangladesh has extreme livelihood vulnerability, with limited physical 

resources, inadequate access to fresh water, few livelihood strategies, a limited variety of crops, and 

poor health conditions (Brojen et. al.23; Brojen & Bari 2023; Nasreen et al., 2023). 

Vulnerability is defined as the conditions influenced by social, physical, financial, and environmental 

factors or processes that intensify the susceptibility of individuals, communities, assets, or systems to 

the consequences of hazards (UNDRR,2022). Vulnerability assessments play a vital role in disaster 

risk reduction by recognizing and assessing the weaknesses and exposures of communities, 

infrastructure, and ecosystems to potential hazards. By understanding and concentrating on 

vulnerabilities, communities can proactively reduce risks and build more robust systems to withstand 

and recover from disasters. Key factors contributing to vulnerability must be identified to build a 

more resilient society that can face and overcome issues associated with climate change (Aksha et al., 

2019).  

Livelihood vulnerability pertains to the susceptibility of households or communities to diversified 

hazards that can disrupt their capacity to sustain their livelihoods and realize their critical 

requirements (Venus et al., 2022). People with limited resources and lower income levels are more 

susceptible to livelihood vulnerability (Mudasser et al., 2020). Livelihood vulnerability assessment is 

an effective and efficient tool for identifying the impact of climate change on coastal areas in terms of 

adaptation. In the process, certain aspects of different societal strata become evident in explaining the 

idea of livelihood vulnerability. There is a scarcity of studies on vulnerability assessments at the 

individual household level in developing countries (Debesai, 2020). However, research focused on 

determining the top influential determinants contributing to livelihood vulnerability still significantly 

less.  

Acknowledging these challenges, the aim of this research is to use machine learning (ML) techniques 

to determine the factors that influence livelihood vulnerability. The current study intends to combine 

all indicators correlated to exposure, sensitivity, and adaptive capacity. Machine learning (ML) 

techniques can accomplish interactions between variables. By identifying these key determinants of 

livelihood vulnerability and their interrelationship, it can be possible to enhance the ability of disaster 

risk reduction at the local level through the implementation of targeted strategies and specific 

initiatives. Therefore, the suggested approach considers interactions between determinants to capture 

the multidimensional and complex aspects of livelihood vulnerability in the coastal area.  

Findings from the research can offer an effective approach that can be applied across the coastal areas 

of different geographical settings to understand better the determinants influencing livelihood 

vulnerability. Instantaneously, it also seeks to determine the relative importance of the determinants 

contributing to the vulnerability of coastal households' livelihoods by utilizing a more extensive 

sample size at the micro-level (ward level). The main novelty of the study lies in emphasizing the 

transition from traditional methodologies to illustrating the application of advanced tools for 

identifying most influential determinants for livelihood vulnerability in coastal area Bangladesh. 

Subsequently, the paper offers a unique way for utilizing a machine learning model to identify the 

most relevant factors of livelihood vulnerability, which adds lots of value to the field of disaster 

management. This approach is versatile enough to be used in different coastal regions throughout the 

world. Furthermore, the majority of current studies evaluate livelihood vulnerability at the macro-

level and there are relatively few that do so at the household level in coastal areas, this study will 
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significantly contribute to the field of disaster management because micro-level studies are more 

useful in developing effective policies for area-oriented contextual disaster risk reduction (Badawy et 

al., 2022). 

2. METHODOLOGY 

2.1 Study area selection  

The study was conducted in Gabura,a coastal island union. Gabura is situated in the Satkhira district's 

Shyamnagar Upazila in southwest Bangladesh's coastline region. The Kholpetua and Kopothakho 

rivers flow along the union's western and eastern borders, thus dividing it from the mainland. Gabura 

was selected as the research site because of its high catastrophe risk. 

2.2 Selection of livelihood vulnerability determinants  

There was a total of 25 determinants, each with its implication concerning the study's objectives, as 

outlined below in Table 1. 

Table 1: Selected determinants for livelihood vulnerability assessment 
 

Vulnerability 

domains 
                                                      Determinants 

Exposure Elevation, river proximity, drainage density, slope, rainfed water inundation 

depth, riverbank erosion area, storm surge inundation area 

Sensitivity 
Distance from kheya ghat, economic vulnerability, unhygienic latrine, 

livelihood dependency on natural resources, distance from potable water 

source, educational status, dependency ratio 

Adaptive Capacity 

Household having bank account, Household migration status, Distance from 

market, Distance from health center, Household with electric facilities, NDVI, 

Household gardening status, household livestock status, household involved 

with improved agricultural activities, household communication status, women 

involvement in household income 

2.3 Sample size calculation and sampling methods 

Based on data provided by the Gabura union parishad in 2023, there are a total of 8,237 households 

distributed among these nine wards. Among 8237 households, we randomly chose 1014 households 

(approximately 12% of total households). Though the study primarily employed quantitative 

methodology, it also incorporated qualitative components. This method involved applying a 

questionnaire survey as the primary data collection method, supplemented by qualitative methods like 

focus group discussions (FGDs) and key informant interviews (KIIs). 

2.4 Method for LVI modelling approaches 

The generalized LASSO machine learning model has been used in this study to evaluate the top 

influential determinants of livelihood vulnerability. The generalized LASSO is an accessible and 

effective machine learning and statistics regularization method. It simplifies the LASSO method. It 

expands on the theory of LASSO (L1 regularization) and Ridge (L2 regularization) to develop a more 

comprehensive outline that supports a wide range of optimization challenges and permits combining 

several regularization techniques.  The generalized LASSO methodology is applied to multitasking 

tasks such as variable selection, model regularization, regulating a predictive model's complexity, and 

assessing linear and non-linear models (Xi et al., 2023).  

 



 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

ICCESD 2024_0759_4 

 

2.4.1 Equation of generalized LASSO model  

The generalized LASSO model's primary equation combines a loss function and several regularization 

terms to solve an optimization problem. 

                      

Where n denotes the number of data points 

P, denotes the number of features (model coefficients) 

 denotes the observed target value for the i-th data point 

denotes the predicted target value for the i-th data point 

 denotes the j-th model coefficient 

 indicates hyperparameters that control the strength of the regularization terms. 

The first term denotes the standard loss function, often the mean squared error (MSE) for regression. 

The second term  associates with L1 (LASSO) regularization, promoting sparsity by 

penalizing the absolute values of coefficients. 

The third term ( ) corresponds to L2 (Ridge) regularization, discouraging large coefficient 

magnitudes. 

The fourth term  confirms a more general compact regularization term that can 

include several norms, like L∞, depending on the specific problem. 

The objective of the optimization problem is to discover the value of model coefficients (  that 

result in the minimization of this objective function. The selection of hyperparameters ( ) 

and the specific regularization terms employed (such as L1, L2, or others) is subject to the specific 

needs of the problem and the desired balance between sparsity and magnitude of coefficients. 

2.4.2 Regularization techniques of generalized LASSO model 

The generalized LASSO model is a flexible strategy that unifies several regularization techniques, 

such as LASSO, Ridge, Ridge LASSO, and others, under the general heading of compact 

regularization. Compact, LASSO, Ridge LASSO, and Ridge with specific values, such as 0.0 or 2.0, 

are used in a generalized LASSO model to denote several penalty structures and the regularization 

level employed in the model.  

When the term is described as "compact", it usually means that no regularization is applied, with a 

value of 0.0. In this instance, the model is effectively doing ordinary least squares (OLS) regression, 

and the regression coefficients are not penalized. A value of 0.0 for "LASSO" denotes strengthless L1 

regularization (λ = 0) and indicates that no regression coefficients are penalized or shrunk by the 

model, and thus, the L1 penalty term is essentially disabled. The term "Ridge LASSO" is not 

commonly used while discussing regularization. The model keeps all its properties and operates 

similarly to Ordinary Least Squares (OLS) regression. A value of 2.0 for "Ridge" denotes a positive 

L2 regularization strength (λ = 2.0) in the Ridge regression. The L2 penalty used in ridge regression 

encourages regression coefficients to be small but does not set them to preciously zero. The greater 

the λ value, the stronger the penalty, resulting in a more significant coefficient shrinkage toward zero. 

L2 regularization with a λ value of 2.0 indicates a relatively robust application. All analysis of 

generalized LASSO model were performed in Salford Predictive Modeler (Machine Learning and 

Predictive Analytics Software) 8.3.2 version. 



 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

ICCESD 2024_0759_5 

 

3. RESULTS AND DISCUSSION 

3.1 Application of Generalized LASSO in Modeling Livelihood Vulnerability 

Generalized LASSO expands on the concept of traditional LASSO (L1 regularization) by adding extra 

penalty terms, such as the Elastic Net (a combination of L1 and L2 regularization). It is employed to 

perform feature selection and shrink coefficients in linear regression models, targeting to indicate a 

limited set of coefficients that play the most crucial role in predicting the target variable. Table 1 

briefly explains how generalized LASSO relates to elasticity, the solution, the number of coefficients, 

average likelihood (Negative log-likelihood), misclassification rate, overall lift, and ROC for 

modeling livelihood vulnerability with 25 indicators. 

Table 2: Solution By elasticity 

Elasticity Sol. N 

Cef. 

Learn 

Ave. 

L.L 

(Neg) 

Learn 

Mc.R. 

Overall 

(Raw) 

Learn 

ROC  

Learn 

Lift 

Test 

Ave. 

L.L 

(Neg.) 

Test  

Mc.R. 

Overall 

(Raw) 

Test 

ROC  

Test 

Lift 

Compact 

(0.0) 

107 1 0.5431  0.1677  0.8355  1.4169  0.5448  0.2396  0.8212  1.3442  

Compact 

(0.0) 

112 1 0.5376  0.1677  0.8355  1.4169  0.5393  0.1677  0.8209  1.3442  

Compact 

(0.0) 

197 2 0.4431  0.1677  0.8737  1.5647  0.4476  0.1677  0.8255  1.3878  

Compact 

(0.0) 

200 2 0.4398  0.1677  0.8737  1.5647  0.4432  0.1677  0.8439  1.4462  

LASSO 

(1.0) 

121 5 0.4141  0.1677  0.9077  1.5654  0.4161  0.1637  0.9033  1.5953  

LASSO 

(1.0) 

150 12 0.3544  0.1371  0.9256  1.5811  0.3611  0.1400  0.9209  1.5654  

LASSO 

(1.0) 

199 23 0.2536  0.0828  0.9558  1.5811  0.2730  0.0927  0.9489  1.5811  

LASSO 

(1.0) 

200 23 0.2516  0.0809  0.9560  1.5811  0.2720  0.0937  0.9491  1.5811  

Ridged 

LASSO 

(1.1) 

116 5 0.4244  0.1677  0.9074  1.5654  0.4260  0.1667  0.9025  1.5969  

Ridged 

LASSO 

(1.1) 

150 12 0.3545  0.1351  0.9265  1.5811  0.3614  0.1400  0.9216  1.5654  

Ridged 

LASSO 

(1.1) 

198 23 0.2558  0.0868  0.9555  1.5811  0.2740  0.0917  0.9487  1.5811  

Ridged 

LASSO 

(1.1) 

200 23 0.2517  0.0799  0.9561  1.5811  0.2721  0.0937  0.9491  1.5811  

Ridge (2.0) 4 10 0.6549  0.3738  0.8955  1.5969  0.6554  0.3738  0.7867  1.5496  

Ridge (2.0) 5 13 0.6529  0.3738  0.9104  1.5969  0.6535  0.3738  0.8244  1.5811  

Ridge (2.0) 199 25 0.2622  0.0868  0.9551  1.5811  0.2779  0.0947  0.9493  1.5811  

Ridge (2.0) 200 25 0.2601  0.0838  0.9554  1.5811  0.2765  0.0957  0.9492  1.5811  

*Sol. =Solution; N. Cef. =No of Coefficient; Ave. LL.(Neg.) = Average LogLikelihood (Negative); 

Mc. R= Misclass Rate 
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This table illustrates that having only two coefficients compact (0.0) results in the highest optimal 

ROC values in training (0.8737) and testing (0.8438). For LASSO (1.0), the highest optimal ROC is 

achieved at 0.9560 in training and 0.9491 in testing with 23 coefficients. The Ridged LASSO (1.1) 

with 23 coefficients exhibits the highest optimal ROC 0.9561 in training and 0.9491 in testing. In the 

case of Ridge (2.0), the highest optimal ROC is seen 0.9554 in training and 0.9493 in testing with 25 

coefficients. So, among all these regularization techniques of generalized LASSO model Ridge (2.0) 

showed the highest ROC value and indicated the effectiveness of the generalized LASSO model. 

 

Table 2 summarizes the model’s performance metrics for training and testing. These metrics are 

essential for evaluating the model’s efficiency in predicting livelihood vulnerability. 

 

Table 2: A well-structured and informative summary of the best model 

Name Learn Test 

Average LogLikelihood (Negative) 0.26215 0.27791 

ROC  0.95510 0.94928 

Variance of ROC  0.00005 0.00005 

Lower Confidence Limit ROC 0.94163 0.93496 

Upper Confidence Limit ROC 0.96858 0.96360 

Lift 1.58110 1.58110 

Kolmogorov-Smirnov (K-S) statistic  0.82236 0.79972 

Misclass Rate Overall (Raw) 0.08679 0.09467 

Balanced Error Rate  

(Simple Average over classes) 

0.10576 0.12366 

Class. Accuracy (Baseline threshold) 0.89152 0.87377 

 

This table shows the lower value (0.27791) of average negative log-likelihood and the higher value of 

ROC (0.94928) of the test dataset, which indicates better model performance. On the other hand, a 

low variance of ROC (0.00005) suggests that the model performance is consistent. Lift greater than 1 

indicates improved model performance. In livelihood vulnerability assessment, both learn and test 

datasets have a lift of 1.58110, suggesting an improvement over random guessing. K-S statistic 

indicates how well the model separates positive and negative cases. A higher K-S state value 

(0.79972) in the test data set suggests better model performance. Otherwise, the misclass Rate is 

lower (0.09467) in the test dataset, which indicates a lower proportion of incorrect prediction. In the 

same way, a lower balanced error rate (0.12366 in the test dataset) indicates better performance in 

correctly classifying vulnerable and nonvulnerable classes. Moreover, finally, a higher classification 

accuracy shows how well the model performs in correctly classifying vulnerable and nonvulnerable 

households regarding livelihood vulnerability.  

3.3 Model validation by confusion matrix 

A confusion matrix is a tabular tool applied in machine learning and statistics to evaluate a 

classification model's performance. It displays the numbers of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN) to provide a clear picture of classification results. 

These numbers help determine a model's recall, accuracy, precision, and F1-score—all necessary 

measures for assessing how well the model divides data into distinct classes. Figure 1 highlights all 

these values for the generalized LASSO model for analysing the key influential factors that make 

people vulnerable regarding their livelihoods. 

3.4 Measuring model performance by roc curve, lift chart, cumulative lift chart, and gain chart 

In data analytics, model validation approaches like ROC, Lift, Cumulative Lift, and Gain are 

frequently employed, especially when assessing the effectiveness of prediction models like 

classification models. Figure 2 shows their interpretation, which provides valuable insights into model 

effectiveness in assessing livelihood vulnerability. 
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Figure 1: Confusion matrix of vulnerable and nonvulnerable classes in the generalized LASSO model 

 

 
Figure 2: Lift chart, Cumulative Lift chart, Gain chart, and ROC curve for the generalized LASSO 

model 
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3.5 Relative importance of the detriments of livelihood vulnerability 

Figure 3 highlights the relative importance of the 25 determinants in assessing livelihood 

vulnerability, revealing the varying degrees to which each element contributes to household 

vulnerability. This allows for the identification of key factors and their respective impacts on the 

outcome of interest. A higher score implies a more significant contribution to livelihood vulnerability, 

while a lower score reveals a lesser contribution.  

Illustratively, the determinant "proximity to the river" holds the highest score at 100%, emphasizing 

its paramount importance. Following closely are "slope" at 76%, "distance from Kheya Ghat" at 59%, 

"rainfed water inundation height" at 51%, and "livelihood dependency on natural resources" at 48%, 

underscoring their significant roles in determining livelihood vulnerability. In contrast, the 

household's livestock status (2%) receives the lowest score, representing its relatively minor impact 

on livelihood vulnerability. 

 

 

Figure 3: Determinants of livelihood vulnerability with score 

 

Residents living alongside the river face significant challenges, including riverbank erosion and storm 

surge inundation issues. The slope of the land is a crucial factor, as areas with a gentle slope can be 

more susceptible to prolonged inundation. Likewise, a gentle offshore slope contributes to the spread 

of storm surges over a larger area, potentially mitigating their height but posing challenges for those 

residing in low-lying regions. As the study union is encircled by river, there are no direct land 

connections with the mainland of upazila except the waterway and the inhabitants of the area suffered 

most, due to their communication with the towns. Significant amount of precipitation coupled with 

poor drainage system are responsible for high rainfed water inundation height. With the limited 

livelihoods opportunities, many people in study union fully dependent on forest and river for their 

basic needs and income generation. People who are completely dependent on these natural resources 

are more vulnerable than others because, in a certain month of the year access to mangrove forests for 

resource collection is totally prohibited. 
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The severity of human vulnerability to natural disasters depends on geographical location, including 

physical attributes and socioeconomic factors (Hansuwa et al., 2022; Sheehan et al., 2023). Proximity 

to the coast, rivers, and local terrain is crucial for hazard exposure (Hossain, 2015). In this water 

encircled union, residences face significant threats from heightened tides, cyclonic surges appearing at 

elevations surpassing one meter above sea level, and riverbank erosion owing to their proximity to the 

river. Proximity to the coastline, rivers, and the nearby topography plays a fundamental role in 

influencing vulnerability to hazards, as emphasized by Hossain (2015).  

During the Focus Group Discussions (FGD) and Key Informant Interviews (KII), participants from 

Gabura consistently highlighted that the absence of regular maintenance has resulted in a gradual 

accumulation of sediment in the riverbed. Consequently, the width of the embankment is shrinking, 

and its condition is weakening over time. Five consecutive cyclones, storm surges, and coastal floods 

severely impacted people's economic activity and their ability to maintain basic living standards. The 

residents in this union experience a multitude of vulnerabilities that significantly impact their 

livelihoods. 

4. CONCLUSIONS 

This research introduces a novel and alternative approach for stakeholders and policymakers to 

explain effective strategies for addressing the top determinants of livelihood vulnerability. To address 

the most influential determinants in livelihood vulnerability, we employed the generalized LASSO 

model, which is appropriate for binary classification, even when dealing with imbalanced class 

variables. Our demonstration revealed that the generalized LASSO model performed very well in 

evaluating the most significant determinants, as evidenced by the optimal ROC curve, confusion 

matrix value, and other pertinent performance metrics. The findings regarding the relative importance 

of determinants indicated that the proximity of households to the river is the leading contributor to 

livelihood vulnerability in the study union. We emphasize the significance of our research outcomes 

and the demonstration of applying machine learning with extensive household-level data, as they have 

the potential to assist decision-makers in formulating more contextually effective initiatives and 

policies. The study's findings also contribute to national risk reduction policies, supporting the Sendai 

Framework and Sustainable Development Goals (SDG) objectives. Subsequently, the local 

authorities, particularly Gabura union Parishad, can benefit from the study's outcomes. Despite its 

numerous practical contributions, the study does have certain limitations. Firstly, it relies solely on the 

generalized LASSO machine learning model for evaluating the primary determinants of livelihood 

vulnerability. Secondly, the study concentrates on Bangladesh's lowest administrative level (i.e., the 

union), which may need to incorporate the broader institutional dynamics fully. This paper 

recommends that future research investigate the determinants of livelihood vulnerability at higher 

administrative levels to reduce the vulnerability. 
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