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ABSTRACT 

This paper evaluates the mechanical characteristics of polypropylene-based High-Strength Concrete 

(HSC) when exposed to various elevated temperatures. This complete approach was structured into 

two phases. The primary objectives of phase one encompassed material characterization for the 

experiment and involved an examination of both the fresh and hardened characteristics of concrete. In 

the second phase, a Multi-layer Perceptron, also known as the Artificial Neural Network (ANN) 

model, was developed as a strength prediction model for HSC. The model's precision was ensured 

through the assessment of the mean absolute error (MAE), mean square error (MSE), and root mean 

square error (RMSE). A total of four different concrete compositions were prepared, each with 

varying polypropylene fiber (PPF) contents of 0.5, 1.0, and 1.5 kg/m3 of concrete. These compositions 

were then exposed to 150°C, 350°C, 550°C, and 750 °C temperatures, respectively. The hardened 

properties of HSC were examined through compressive and tensile strength tests over 28 days at all 

elevated temperatures. The findings of these experiments indicated a decline in fresh properties, while 

an enhancement was observed in the mechanical behavior of HSC with the addition of PPF. 

Additionally, elevated temperatures led to a reduction in the mechanical performance of all HSC 

mixes, but the incorporation of fibers noticeably mitigated the strength loss. 1.0 kg/m3 of PPF was 

found to be the optimum inclusion. Finally, in phase two, a data augmentation technique was applied 

to extend the experimental dataset to introduce variability while training the ANN model. In addition 

to that, two separate regularization methods were also employed to find the best possible approach to 

reduce overfitting, aiming to build an improved prediction model. The achievement of a high linear 

coefficient correlation (R2) value of 0.957 with the unseen testing dataset underscores the superior 

performance of the selected ANN model. 

 

Keywords: High-strength concrete, Polypropylene fiber, Elevated temperature, Artificial neural 

network, Data augmentation. 
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1. INTRODUCTION 

The adoption of HSC in constructing structural elements is on the rise across the globe because of the 

number of benefits offered by such concrete. HSC has higher physico-mechanical qualities such as 

compressive strength, stiffness, and long-term durability, as well as cost benefits from geometrical 

section reductions (Hamrat et al., 2010). However, HSC is known to have adverse effects on its 

mechanical properties and leads to explosive spalling when it is exposed to high temperatures 

(Elsanadedy et al., 2017). The spalling occurs in HSC due to the reduced water-cement ratio and 

permeability of the concrete (Noumowe et al., 2009). The HSC experienced significant strength loss 

at nearly 150ºC due to the high pore pressure impact caused by the low permeability of HSC (Bangi & 

Horiguchi, 2011). Some researchers (Long & Nicholas, 2001) found that the dense microstructure of 

HSC caused by the low W/C ratio provides the HSC a poor permeability, preventing the release of 

water vapor within the pores as the temperature rises, making the concrete more prone to spalling. 

According to Caetano et al. (2019) in the temperature range of 700 to 900 degrees Celsius, concrete 

undergoes substantial mass loss and critical transformations, including decarbonization of limestone 

aggregates, resulting in compromised microstructural strength and reduced mechanical resistance. 

 

It is widely known that the participation of fibers is the most effective means of preventing HSC from 

spalling (Choumanidis et al., 2016). In comparison to other fibers, the inclusion of polypropylene in 

HSC shows better performance in terms of mechanical properties at elevated temperatures and its 

shrinkage control (Bilodeau et al., 2004; Kalifa et al., 2001; Roy et al., 2021; Serrano et al., 2016). 

PPF incorporated in concrete creates pores and small channels when exposed to elevated temperatures 

with the fiber melting. The additional porosity and small channels lower internal vapor pressures in 

the concrete and reduce the chance of spalling (Noumowe, 2005).  According to several authors 

(Bilodeau et al., 2004; Varona et al., 2018), PPF melts at 160–170 ºC and vaporizes at 350 ºC, 

introducing new pores and microcracks in the cementitious matrix that may improve concrete’s 

permeability. These phenomena reduce the damage and resistance of the concrete exposed to high 

temperatures of the fire (Ozawa & Morimoto, 2014). Behnood and Ghandehari (2009) observed that 

High-strength concrete (HSC) containing PPF showed significant compressive and splitting tensile 

strength at normal temperature (25°C). Nevertheless, HSC having PPF demonstrated a greater 

percentage of retained compressive strength compared to other mixtures when subjected to elevated 

temperatures. Huismann et al. (2012) noticed that the addition of PPF accelerated moisture transport 

in HSC. For that, the transient strain under 750°C resulted in drying shrinkage occurring in the reverse 

direction of the free heat stress. 

 

Compressive strength is the most crucial property to investigate the strength of concrete and is widely 

used in the construction sectors (Tanyildizi & Coskun, 2008). However, determining this 

characteristic often involves a prolonged trial-and-error process. An effective approach is the 

utilization of cutting-edge technology, such as Machine Learning (ML) algorithms. These algorithms 

take various concrete parameters as input and make predictions on strength with a certain level of 

precision. Many authors (Abuodeh et al., 2020; Ahmadi et al., 2017) applied ANN to analyze 

compressive strength forecasting abilities and recommended it for future experiments. In a study, 

Almohammed and Thakur (2023) investigated the strength predictive capabilities of concrete mixed 

with Basalt Fiber and PPF using different ML models. Similarly, Altun and Dirikgil (2013) and Uddin 

et al. (2023) also evaluated different algorithms to explore alternative ways to determine mechanical 

characteristics under elevated temperatures and dynamic yield stress of PPF-reinforced concrete. 

Significant outputs of different evaluation metrics confirmed their analytical abilities in real-world 

scenarios.  

 

In this study, the authors experimented with different temperatures' effects on the fresh and hardened 

properties of PPF-reinforced HSC and established a robust ANN model, counterfeiting the 

possibilities of overfitting through the augmented dataset along with regularization techniques. While 

several studies have explored the heat impact on concrete containing PPF, no analysis has been 

noticed specifically investigating the application of ANN models trained using an extended dataset for 
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PPF-reinforced HSC. This novel approach not only added uniqueness but also enabled opportunities 

for a more comprehensive exploration of concrete technology through advanced ML techniques. 

2. METHODOLOGY 

2.1 Materials 

In this study, Ordinary Portland Cement (OPC) type I (CEM-I 52.5 N) was manufactured by a 

regional brand in compliance with ASTM C150 (2020). River sand, having a fineness modulus of 

2.77 as per ASTM C136 (2019), was employed as the fine aggregate in the concrete blends. On the 

other hand, crushed stone chips with a maximum nominal size of 19 mm were used as the coarse 

aggregate. The specific gravity and water moisture content of the coarse and fine aggregates were 

2.82, 1.78% and 2.45, 2.31%, respectively. The results of the investigation of various aggregate 

grades using the ASTM (C29, 2017; C127, 2015; C128, 2015) standards are highlighted in Table 1. A 

polycarboxylate-based ether was used as a superplasticizer (SP) to tune the workability of the 

concrete mixes. PPF with lengths and diameters of 12 mm and 24 µm, respectively, were utilized in 

the study, which followed the standard of ASTM C1116 (2015). Table 2 shows the fiber properties. 

 

Table 1: Aggregate properties 

Properties 
Specific 

gravity 

Absorption 

(%) 

Moisture 

content 

(%) 

Unit weight (kg/m3) Void ratio (%) 

Compacted Loose Compacted Loose 

Coarse 

Aggregate 
2.82 1.17 1.78 1671 1494 38.2 44.8 

Fine 

Aggregate 
2.45 1.63 2.31 1563 1393 34.5 41.9 

 

Table 2: PPF properties 

Diameter 
Tensile 

strength 

Specific 

gravity 
Absorption 

Modulus 

of 

elasticity 

Melting 

point 

Ignition 

point 

Alkali, acid, 

and salt 

resistance 

24 µm 550 MPa 0.91 None 3447 MPa 160°C 590°C High 

2.2 Mix Proportion 

In accordance with ASTM C192 (2019), four different concrete mixes were established with varying 

dosages of PPF amounted to 0, 0.5, 1.0, and 1.5 kg/m3 of concrete. The total mix designs are shown in 

Table 3. Cylindrical testing samples with a diameter of 100 mm and height of 200 mm were made and 

preserved in the laboratory at 25°C (room temperature) for 24 hours. After initial hardening, the 

samples went through a 28-day curing process in water tanks before being subjected to elevated 

temperatures, including 150°C, 350°C, 550°C and 750°C at a heating rate of 18°C/min using an 

electric furnace. The specimens were kept at designated temperatures for 30 minutes and cooled to 

room temperature by the end. Throughout the process, a digital controller with a microprocessor-

based PID system was utilized to maintain higher temperatures in the furnace.  

 

Table 3: Mix design of concrete specimens  

 

Specimens 

code 

Cement 

(kg/m3) 

Fine 

Aggregate 

(kg/m3) 

Coarse Aggregate 

(kg/m3) 

Fiber content 

(kg/m3) 
W/C 

Water 

(kg/m3) 

SP 

(%) 

HSC 532 804 844 0 0.3 159 1 

FRHSC-0.5 532 804 844 0.5 0.3 159 1 

FRHSC-1.0 532 804 844 1 0.3 159 1 

FRHSC-1.5 532 804 844 1.5 0.3 159 1 
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2.3 Test Methods  

To analyse the fresh properties of the concrete mixes, the slump and compacting factor tests were 

carried out following ASTM C143 (2015), and BS 1881-103 (1993) standards, respectively. After 

treating the specimens with different temperatures, mechanical characteristics were recorded in 

compliance with ASTM C39 (2020) for compressive and ASTM C496 (2017) for splitting tensile 

strength tests at 28 days.  

2.4 ANN Model  

Artificial Neural Networks (ANNs) are constructed on computational frameworks, mirroring the 

biological mechanisms of the human brain's neural system, which processes information through 

interconnected neurons. Likewise, ANNs consist of layers of artificial neurons (also known as nodes) 

that work together to solve complex problems and make predictions. The capacity of ANNs to rapidly 

acquire proficiency in addressing intricate problems has been demonstrated through recent 

breakthroughs in artificial intelligence (LeCun et al., 2015). Typically, a neural network consists of 

three layers, including the input layer, hidden layers, and output layer, where neurons within the same 

layer are not directly connected. The input layer represents input parameters, and the number of input 

neurons matches the problem's output neurons. Hidden layers are mainly used in facilitating 

intermediate processing of the data between the input and output layers. In this experiment, different 

PPF content and varying temperatures were used as input variables, with compressive strength as the 

output feature. Several neural network models were constructed with the Rectified Linear Unit 

(ReLU) (Agarap, 2018) activation function in the hidden layers, whereas a linear transfer function was 

employed in the output layer. Before conducting cross-validation, the Adaptive Moment Estimation 

(Adam) (Singarimbun et al., 2019) optimizer was utilized in conjunction with backpropagation to 

train the neural network with all the architectures. Subsequently, based on the validation result, an 

optimal ANN structure comprising two hidden layers with four nodes in the first and three nodes in 

the subsequent hidden layers, respectively, was determined with proper adjustment in 

hyperparameters. The architecture is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Selected model’s layout (LeNail, 2019). 

2.4.1 Data Augmentation  

When complex ML models like ANNs are fed with small datasets for training, the challenge of 

overfitting is magnified as the models may struggle to learn meaningful patterns. To address such 

issues, the data augmentation approach can be an effective solution to enhance the models' 

generalization abilities (Ying, 2019). Similarly, it is also crucial to ensure appropriate augmentation 

techniques for realistic sample generation (Meyer et al., 2021). A comprehensive study of Gaussian 

Copula augmentation by El Khessaimi et al. (2023) noticed a boost in performance with 500 

simulated data points. For our experiment, Gaussian Noise (GN) augmentation was incorporated to 

introduce 150 synthetic samples. It is a repeated process that employs a normal distribution with 0 as 

the mean and a specific standard deviation (std), which is then added independently to each data 

point. The magnitude of the noise is controlled by adjusting the std. In this study, different std values 

Output layer 

Hidden layer 2 

Hidden layer 1 

Input layer  

Temperature  
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were iteratively tried based on the correlation between the original data points, and optimum values 

were determined. Equation 1 demonstrates the mathematical formula of GN. 

 

                                                                                                                                                (1)     

                                                                                                                                                                                                               
In the context of data augmentation, Xa represents the augmented data point, while Xo denotes the 

original data point. The notation N(μ, σ) is used to describe a randomly extracted sample from a 

Gaussian distribution, where μ denotes the mean and σ denotes the std. 

3. RESULTS AND DISCUSSION 

3.1 Fresh Properties 

The workability of the mixes was determined through the slump and compacting factor test. The 

findings are visually illustrated in Figure 2. There was a significant decline in slump value was noted 

with the inclusion of PPF. The control sample HSC yielded 90 mm in a slump, followed by FRHSC-

0.5, FRHSC-1.0, and FRHSC-1.5, with a reduction of approximately 17%, 22%, and 40%, 

respectively. Other studies also highlighted similar traits of fibers in terms of reducing the slump 

(Afroughsabet & Ozbakkaloglu, 2015; Nath et al., 2021; Shahriar et al., 2022). PPF was found to be 

responsible for making the mixtures adhere and cohesive, leading to a reduction in the slump value. 

Similarly, the compacting factor value followed the same downward trend with the increment of fiber 

volume. A compacting factor of 0.85 was gained by the control HSC, while FRHSC-0.5, FRHSC-1.0, 

and FRHSC-1.5 encountered a slight reduction of 2%, 4% and 7%, respectively, in the same order. 

 
Figure 2: Fresh test results of the mixes  

3.2 Mechanical Properties 

3.2.1 Compressive Strength Behavior 

The outcomes of the compressive strength test of HSC mixtures for various content of PPF (0.5, 1.0 

and 1.5 kg/m3) at different temperatures (150°C, 350°C, 550°C and 750°C)  for 28 days are presented 

in Figure 3. It is noticeable that the participation of PPF in the concrete mixtures improves their 

compressive strength. However, the temperature significantly impacted compressive strength 

reduction by about 22-55% for mixture HSC, 14-50% for FRHSC-0.5, 13-45% for HSC-1,0, and 14-

46% for FRHSC-1.5 at temperatures of 150°C, 350°C, 550°C, and 750°C respectively, in comparison 

to the room temperature. The result also shows that normal HSC mixes demonstrated more 

vulnerability at elevated temperatures relative to HSC specimens containing PPF. Similar findings 

were recorded regarding the decrease in strength of HSC at higher heat exposure in earlier analysis 

(Kalifa et al., 2001). According to Behnood and Ghandehari (2009), specimens with 0, 1, 2, and 3 

kg/m3 PPF content respectively, demonstrated a noticeable reduction of about 15–73%, 13–70%, 11–
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69%, and 12–71% in relative strength of concrete at 100–600°C in comparison to room temperature. 

In our investigation, after heating the testing samples at 150°C, mixture HSC showed the maximum 

loss in compressive strength, whereas the FRHSC-1.0 showed the lowest relative loss in contrast to 

the standard temperature (25°C). In a similar manner, both the HSC and FRHSC-1.0 mixes showed 

the most significant and least significant declines in strength at temperatures of 350°C, 550°C, and 

750°C among all the mixtures. After being exposed to 750°C, all HSC specimens showed a 

significant drop in compressive strength. The noted decrease under higher temperatures is likely due 

to a combination of factors, including the disintegration of Ca(OH)2 and the deterioration of the 

cohesion between aggregates and cement paste. This weakening results from both the expansion of 

aggregates and the corresponding contraction of the paste, coupled with the drop in moisture. In 

contrast, the presence of PPF significantly mitigated the adverse effects of high temperatures over the 

strength loss in HSC mixes. After crossing 160°C, PPF melted, forming channels for the release of 

pore vapor. This gradual release of vapor helped lower the temperature and, in turn, minimized the 

formation of microcracks within the concrete. Consequently, the performance was enhanced under 

high temperatures. 

 
 

Figure 3: Compressive strength of mixes when exposed to different temperatures  

3.2.2 Splitting Tensile Strength Behavior 

The inspection outputs of specimens in splitting tensile strength tests for 28 days at different 

temperatures are highlighted in Figure 4. Likewise, compressive strength, the higher volume of PPF in 

test samples, ensures superior performance in the tensile strength test. Mixture FRHSC-1.5 achieved 

5.08MPa, which is considerably higher than the others. Enhancement was also recorded for FRHSC-

0.5 and FRHSC-1.0, amounting to 5% and 16% respectively, compared to the control HSC. Fiber 

actively works in mitigating crack formation and propagation, which improves tensile resistance in 

HSC. In one study, Afroughsabet and Ozbakkaloglu (2015) reported a 13-20% increase in tensile 

behavior, while in another study, the addition of 0.15-0.45% fiber with 10% silica fume resulted in a 

4-9% performance improvement, as observed by Ahmed et al. (2020) after 28 days relative to the 

control mix. Conversely, the tensile performance of all HSC mixes started to drop noticeably with the 

increase in temperature. At 150°C, the decline was documented at around 14%, 13%, 10%, and 11% 

for HSC, FRHSC-0.5, FRHSC-1.0, and FRHSC-1.5, respectively in comparison with the ambient 

temperature (25°C). When the temperature went beyond 160°C, fibers within the specimens started to 

melt, which halted the crack dissemination. This acted as a contributing factor to the observed 
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variation in strength between test samples with the presence and absence of fiber reinforcement. For 

the subsequent two temperature stages, specimens of HSC, FRHSC-0.5, FRHSC-1.0, and FRHSC-1.5 

mixtures encountered even further deterioration in strength, which accounted for 29%, 26%, 22%, and 

23% at 350°C and 38%, 35%, 33%, and 34% at 550°C, respectively. Additionally, the ultimate losses 

were identified as approximately 50%, 47%, 44%, and 46% for HSC, FRHSC-0.5, FRHSC-1.0, and 

FRHSC-1.5 mixtures, respectively, when exposed to the highest temperature at 750°C. This can be 

explained by the physical and chemical degradation of HSC under extreme heat, as well as the 

coarsening effect. It was also noted that the control HSC, which contained no fiber, exhibited the most 

significant decrease, while FRHSC-1.0 showed the lowest percentage drop. Similar trends were 

observed in Behnood and Ghandehari (2009) studies, where 2 kg/m³ of PPF usage was identified as 

the ideal proportion in HSC at different temperatures like 100°C, 200°C, and 300°C for the relative 

loss in tensile strength. 

 

 
Figure 4: Tensile strength of mixes when exposed to different temperatures  

 

3.3 Prediction Model 

In the second phase of this study, a compressive strength prediction model was developed by 

implementing neural network concepts. In order to ensure robustness and diversity, the augmented 

dataset was used for training, whereas the original experimental data was utilized for cross-validation 

and testing of the model. To further combat overfitting, two regularization approaches were tested, 

including four different strength values (0, 0.01, 0.001, 0.0001) of L2 (ridge regularization) (Gupta et 

al., 2018), and Early Stopping (Lodwich et al., 2009). The study observed that with the sole 

application of early stopping with a criterion set at 10 and using an L2 regularization strength of 0, the 

model learned much more efficiently. Rice et al. (2020) also reported that no technique performs as 

well as early stopping. Lastly, the proposed ANN model generalized well with the unseen data points 

having an R-squared value of 0.957. Table 4 and Table 5 display the predicted values and other 

performance metrics individually.  

 

Table 4: Experimental vs predicted values in MPa 
 

Mixture 

type 

Temperature 

(°C) 

Experimental value 

(Compressive) 

Predicted value 

(ANN) 

HSC 
25 50.05 46.98 

150 39.23 43.58 
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350 36.96 38.16 

550 34.08 33.70 

750 22.57 22.88 

FRHSC–

0.5 

25 50.79 47.34 

150 43.55 44.56 

350 39.4 40.11 

550 36.09 35.65 

750 25.26 24.88 

FRHSC–

1.0 

25 51.33 49.28 

150 44.8 46.50 

350 41.82 42.05 

550 39.35 37.60 

750 27.92 26.87 

FRHSC–

1.5 

25 53.66 53.28 

150 46.43 48.45 

350 42.86 43.99 

550 40.89 39.54 

750 28.78 29.03 

 

Table 5: Result of different evaluation metrics  

 

Metrics Result 

R2 0.957 

MSE 1.561 

MAE 1.359 

RMSE 1.249 

 

4. CONCLUSIONS 

Based on the insights of this study, the workability of concrete started to decline with the presence of 

PPF, whereas hardened properties enhanced noticeably. The impact of higher heat exposure adversely 

affected the strength characteristics of all mixtures, with a noticeable difference: the relative loss was 

less pronounced in both compressive and tensile strength for the samples containing fibers compared 

to the plain ones. In addition to that, specimens with 1 kg/m3 fiber content achieved superior 

performance than all the other mixes. Finally, extending the dataset with 150 GN augmented data 

points, and the implementation of early stopping with a threshold of 10 resulted in the successful 

development of a robust ANN model. The compelling R-squared value of 0.957 validated the model's 

remarkable capability to grasp and elucidate the variations present in the data. 
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