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ABSTRACT
The assessment of liquefaction potential is a crucial aspect in the field of geotechnical engineering. It makes it
possible to assess the soil's vulnerability to liquefaction in the event of a seismic event. The application of a
machine learning algorithm to improve the precision of liquefaction potential assessment is the particular focus
of this study. The Groundwater table (GWT), Effective stress (rav), Effective overburden stress (r’av), Fineness
content (F<0.0075), Corrected SPT-N value (N1(60CS)), Depth (Z(m)), and Peak ground acceleration (PGA)
are the input parameters that are used in logistic  regression to predict the liquefaction potential.  The input
parameters used in this study were collected from the authors earlier studies. In order to build an estimator
model, these parameters were gathered. This study intends to investigate the efficacy of logistic regression in
precisely estimating the potential for liquefaction through an extensive analysis. The algorithm's performance is
assessed through the use of metrics like f1-score, recall, accuracy, and precision. With an accuracy of 93.3% for
testing data and 95% for training data,  the experimental  results show that the logistic  regression algorithm
performed perfectly on the dataset. The results of this study could greatly increase the precision of liquefaction
assessment, leading to better decision-making in the domains of seismic hazard mitigation and geotechnical
engineering. This research adds to the ongoing efforts to enhance comprehension of soil behavior under seismic
conditions by utilizing machine learning capabilities.
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1. INTRODUCTION
One of the most damaging effects of earthquakes is liquefaction, which occurs when saturated, loose
sand deposits lose their shear strength. In the last five decades, scientists have carried out a great deal
of research and put forth a number of strategies to forecast the occurrence of this catastrophic event.
Initially,  undrained  cyclic  loading  laboratory  tests  have  been  used  to  assess  a  soil's  liquefaction
potential (Castro, 1975; Peck, 1979; Castro, 1987). However, many researchers have chosen to use in
situ tests because it is more difficult to obtain undisturbed samples of loose sandy soils (Seed et al.,
1983; Juang et al., 2014; Kayen & Mitchell,  2008). The researchers have developed a number of
empirical formulas that are based on various in situ soil tests, including shear wave velocities (Vs),
self-boring pressure meter tests (BPT), cone penetration test CPT, and standard penetration test SPT.
The  two  essential  components  of  empirical  field-based  procedures  for  liquefaction  potential
determination are: (i) an appropriate in situ index to represent soil liquefaction characteristics; and (ii)
an analytical framework to organize historical experiences. However, because site investigation work
and laboratory testing are required, these methods are expensive. It is therefore necessary to find a
simpler method of computing soil liquefaction potential (SLP).

The application of machine learning (ML)-based techniques to complex geotechnical problems has
been shown by geotechnical researchers (Karthikeyan & Samui, 2014; Fahim et al., 2022; Ghani &
Kumari,  2022).  A  deep  learning  (DL)  model  for  accurate  soil  classification  in  liquefaction
determination was presented by Kumar et al., in 2021. With the use of emotional backpropagation
neural networks (EMBP), the applicability of the DL model was examined. A computer model for
calculating the potential for soil liquefaction using artificial neural networks is presented by Tung et
al.,  (1993).  It  is  claimed  that  the  model,  which  was  developed  using  data  sets  from  previous
occurrences, can be used to comprehend events that will  occur in the future. Using geotechnical,
geometric, and seismic load parameters, García et al., (2012) introduce a machine learning scheme to
assess the liquefaction potential of soils. Field observations of the liquefaction performance of past
earthquakes, along with a sizable database of CPT and vs measurements, are examined. Liquefaction
can be predicted with neural networks and classification trees in a nonlinear environment created by
this database. In order to assess the soil's potential for liquefaction in the event of an earthquake,
Ahmad et al., (2021) examined the effectiveness of four machine learning (ML) algorithms using the
cone penetration test (CPT) based on field case history records. Hu, (2021) developed two Bayesian
network  models  to  forecast  soil  liquefaction  using  shear  wave  velocity  databases  and  dynamic
penetration testing. When the created models were compared to the ones that already existed, it was
found that they performed well. According to earlier research on the use of ML techniques for soil
liquefaction  potential  (SLP),  soils  were  correctly  classified  into  liquefied  and  non-liquefied  soil
classes by the ML models (Li et al., 2020; Chen et al., 2018; Sharma & Singh, 2017).  

The goal of this work is to develop an empirical machine learning (ML) approach for liquefaction
potential  assessment.  Empirical  formulas  are  used  to  evaluate  liquefaction  triggering  based  on
standard penetration test (SPT) data from various government and private organizations in Dinajpur
Sadar in order to meet research objectives. Subsequently, the acquired dataset's seismic liquefaction
triggering is predicted using a machine learning algorithm. A machine learning algorithm of the linear
classification model type is called logistic regression. In order to produce binary outputs, such as grid
search cross-validation, it implements the sigmoid function. This study also emphasizes how various
soil parameters are correlated to cause the liquefaction of the soil. Confusion matrices are then used to
assess the developed models, and the results are subsequently utilized to determine the model is also
assessed using the following metrics:  AUC value,  Cohen's  kappa  coefficient,  F1  score,  log loss,
precision,  recall,  accuracy,  Mathews  Correlation  Coefficient  (MCC),  Specificity,  and  Overall
Accuracy.

2. METHODOLOGY

3. Study Area
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This study used soft computing techniques to find the liquefaction potential index, representing an
analytical  procedure.  This is  carried out  using the SPT test  data  that  was gathered from various
Dinajpur zones. Because Dinajpur is situated in the Terai basin, its soil has a significantly higher
sand-to-silt ratio than clay. Because of the numerous fault lines in this area, including the Assam, Sub
Dauki,  Bogra,  and  Shillong  faults,  it  is  especially  prone  to  earthquakes.  Khansama,  Ghoraghat,
Nawabganj,  Parbatipur,  Fulbari,  Biral,  Birrampur,  Birganj,  Bochaganj,  and  Hakimpur  are  the  13
upazilas that make up the region. Dinajpur Sadar is expanding quickly as a result of industrialization
and urbanization. Many infrastructure projects are under construction in order to meet the increasing
demand.

4. Data Collection
The input parameters for this investigation were gathered from previous studies conducted by Hossain
et al., (2022). In previous studies, data was collected from public and private organizations that have
carried out subsurface investigations at different locations across the city. The previous study used
data that was taken from the 150 soil test reports. The data sets collected cover the majority of the
region. The SPT test results using the deterministic approach determined the soil layers' liquefaction
state. These borehole data, along with the analysis results from previous studies, were then tabulated
to  produce  the  data  sets  required  for  the  machine  learning  models.  Groundwater  table  (GWT),
Effective  stress  (rav),  Effective  overburden  stress  (r’av),  Fineness  content  (F<0.0075),  Corrected
SPT-N value (N1(60CS)), Depth (Z(m)), and Peak ground acceleration (PGA) are the collected input
parameters.

5. Working Principle
Nearly all complex geotechnical engineering problems have been solved in the past ten years using a
variety of soft computing techniques. These studies are mostly based on Artificial Neural Network
(ANN)  models  with  various  network  architectures.  This  study  attempts  to  estimate  the  soil
liquefaction  resulting  from  challenging  and  time-consuming  laboratory  studies  using  a  logistic
regression model based on grid search cross validation techniques. A machine learning algorithm's
operation starts with data collection, which is the process of gathering pertinent data and ensuring its
quality  through  pre-processing.  Next,  pre-processing  is  used  to  eliminate  any  outliers  or
inconsistencies from the data, and normalization is applied to guarantee that all variables have the
same scale. Grid search cross validation techniques are used in conjunction with StandardScaler to
determine  the  optimal  hyperparameters  for  accurately  predicting  the  target  variable  and  achieve
normalization. The optimal hyperparameter for this investigation is found to be c=10; penalty=12;
solver=liblinear, utilizing the best estimator of grid search. A test dataset is used to train the logistic
regression model and evaluate its capacity for generalization. Finally, appropriate metrics are used to
assess the model's performance.

6. Logistic Regression
The logistic regression algorithm is a type of supervised learning model and also statistical model
which is used to estimate the likelihood of a binary result, such as success or failure, true or false, or
yes or no, depending on one or more independent variables. Logistic regression model usually uses a
logistic  function to  model  a  binary dependent  variable.  The logistic  function,  also known as the
sigmoid function, is represented by the equation:

where ‘z’ is the input to the function, e is the base of natural logarithms, and the output is a value
between 0 and 1. This output can be interpreted as the probability of the positive class.

To best predict the output, the algorithm determines the weights for each input feature. To do this, the
difference between the values predicted by the algorithm and the actual values is measured by the cost
function, which can be minimized. Given is the logistic regression cost function, which is:
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Here ‘y’ is the actual value, h is the predicted value, and log is the natural logarithm.

Gradient descent is used to update the weights iteratively until the cost function is minimized. The
liquefaction potential of fresh data can be predicted using the model once it has been trained. Metrics
like accuracy, precision, recall, and the area under the receiver operating characteristic curve (AUC-
ROC) are used to assess the model's  performance. All things considered, the Logistic Regression
Machine Learning Algorithm offers a reliable and effective way to determine liquefaction potential.
It's  an  important  tool  for  this  task  because  it  can  handle  big  datasets  and  intricate  relationships
between variables.

7. Feature Scaling
Standardization  is  a  technique  used  to  scale  features  for  machine  learning  models.  Data
standardization is a process that combines the structures of multiple datasets into a single, consistent
data  format.  The  alteration  of  datasets  occurs  subsequent  to  the  collection  of  data  from diverse
sources, but precedes the ingestion of the data into the intended systems.

z = (x - μ) / σ

Here ‘z’  represents the standard value,  ‘x’ is the original value,  the mean is  denoted by ‘μ’ and
standard deviation is represented by ‘σ’.

Standardization preserves the distribution and form of the data while making it  more suitable for
algorithms that assume a normally distributed set of data. Easy-to-use tools for standardization are
provided by Python modules like Scikit-Learn. To scale the input data, standardize the features in the
dataset using the StandardScaler class.

8. Model Evaluation
Numerous  techniques  are  employed  to  assess  a  model's  performance  in  classification.  The
aforementioned  metrics  comprise  precision,  recall,  accuracy,  F1  score,  log  loss,  Cohen's  kappa
coefficient, Mathews Correlation Coefficient (MCC), specificity, and AUC value. These metrics are
designed to assess the degree of categorical accuracy that exists between the expected and actual
outcomes. For the most part, a good model is anything above 0.8.

9. RESULTS AND DISCUSSIONS

10. Statistical Information
Descriptive statistics can also be used to characterize an entire dataset. Descriptive statistics, in short,
help with the description and comprehension of the features of a given data set by providing concise
summaries of the data set's samples and measurements. Measures of centre, such as the mean, median,
and mode, are among the most widely used types of descriptive statistics. They are utilized in nearly
all mathematics and statistics courses across all educational levels. To find the mean, also known as
the average, add up all the numbers in the data set. Subtract this sum from the total number of figures
in  the  dataset.  Descriptive  statistics  (spread)  are  a  statistical  subset  that  includes  measures  of
variability and central tendency. The mean, median, and mode are three frequently used metrics to
assess  central  tendency.  On  the  other  hand,  measures  of  variability  include  variance,  standard
deviation,  minimum and maximum variables,  and  variance.  The  input  dataset's  statistical  data  is
shown in Table 1.

ICCESD 2024_135_4



7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh

Table 1: Statistical information of input data

Index Z(m) N1(60cs) F<0.0075 G.W.T rav r'av Pga

count 150 150 150 150 150 150 150

mean 3.76077 11.2483 72.6953 2.74667 70.5053 46.7281 0.2354

std 2.56634 7.12516 24.5857 0.79109 47.6095 24.288 0.64163

min 0.7621 2.2921 11 1.5 18.2427 1.1043 0.03

25% 1.82 7.0358 49.25 2.25 27.8089 24.073 0.12

50% 3.81 10.1059 81 2.5 67.0058 42.8637 0.2

75% 5.33 13.4512 96 3 94.5778 59.9119 0.23

max 10.67 70.1165 99 4.75 199.15 115.35 8

11. Model Validation

11.1.1 Correlation Matrix

A table that displays the pairwise correlations between a group of variables is called a correlation
matrix. When working with multivariate data, it  is an especially useful tool in statistics and data
analysis. The degree and direction of a linear relationship between two variables are measured by
correlation. In this study Pearson correlation coefficient matrix is used to represent the correlations
between input variables. Figure 1 shows the correlation matrix for the dataset.

Figure 1: Correlation matrix

In this study, binary classification is done based on Logistic regression, where 0 means no liquefiable
and 1  means  liquefiable.  Considering  binary  classification,  the  correlation  matrix  represents  that
Fineness content (F<0.0075) and N1(60CS) has a strong relationship (r=-0.7 and r=-0.34 respectively)
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to predict Liquefaction Potential Index (LPI) and very lower or about to neutral relationship to predict
Liquefaction Potential Index (LPI) for depth (r=-0.059) and PGA (r=0.069).
11.1.2 ROC Curve

Some conclusions are  drawn from the evaluation,  and these are then displayed using a Receiver
Operating Characteristic (ROC) curve. The Area under the ROC Curve (AUC) represents a value
between 0 and 1, with a value closer to 1 suggesting better model performance. The ROC curve is a
plot of sensitivity versus false positive rate, where the line along the diagonal represents a pure 50%
chance of accurate prediction of a model. To summarize, the ROC curve plots the false positive rate
against the sensitivity (Park, Goo, & Jo, 2004). An AUC value of more than 0.7 is typically regarded
as an acceptable value for the purposes of validating the model. An AUC value of more than 0.7 is
typically regarded as an acceptable value for the purposes of validating the model. The study revealed
that the Logistic Regression model had an AUC value of 0.9523 for testing data and an AUC value of
0.9509. These values suggest that the model is functioning well. The graphical representation of ROC
curve for testing and training data is shown on Figure 2 and Figure 3.

Figure 2: ROC curve for testing data

Figure 3: ROC curve for training data
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11.1.3 Confusion Matrix

A confusion matrix is a technique used to analyse and summarize how well a classification technique
performs.  Relying  only  on  classification  accuracy  may  result  in  incorrect  conclusions  if  dataset
contains more than two classes or if the number of observations in each class is uneven. A better idea
can be obtained about  the classification model  as it  is  working correctly and the errors that  it  is
making by  calculating  a  confusion  matrix.  So  simply,  an  explanation  of  a  classification  model's
performance when applied to a set of test data for which the true values are known is often provided
by a confusion matrix, which is a table that compares actual true negative and positive data with
predicted true negative and true positive data that is successfully achievable. Therefore, a graphical
depiction of the confusion matrix can be used to understand the overall comparison between the actual
and  projected  data.  In  order  to  assess  the  model's  performance  in  terms  of  true  positives,  true
negatives, false positives, and false negatives, it summarizes the predicted and actual classifications
(Figure 4).

Figure 4: Confusion Matrix

The confusion matrix for testing data is graphically represented by the Figure 5.

Figure 5: Confusion matrix for testing data
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The  Figure  5  represents  that,  19  sample  data  is  predicted  as  liquefiable  and  these  are  actually
liquefiable, model predict 9 sample data as no liquefiable ad these are actually non liquefiable, no
sample is predicted incorrectly as liquefiable but 2 sample data is predicted as no liquefiable but these
2 data is actually liquefiable. Figure 6 represents the graphical representation of confusion matrix in
terms of training data.

Figure 6: Confusion matrix for training data

Figure 6 shows that, the classification model predict 72 and 42 data as liquefiable and no liquefiable
respectively and these data are actually liquefiable and no liquefiable.  But the model predicts 2 data
as liquefiable and is actually no liquefiable as well as 4 data is predicted as liquefiable but these are
actually no liquefiable.
11.1.4 Performance Evaluation Indicators

A classification model's performance can be evaluated using a variety of metrics and performance
indicators, depending on the situation. In this study, Precision, recall, accuracy, F1 score, Log loss,
Cohen’s kappa coefficient, Mathews Correlation Coefficient (MCC), Specificity and AUC value are
used as performance evaluation indicators. The value obtained by the classification model is tabulated
on the Table 2.

Table 2: Performance evaluation indicators

Indices Testing Training Ideal Value
Precision 1 0.9729 1
Recall 0.9047 0.9474 1
Accuracy 0.933 0.95 1
F1 Score 0.95 0.9599 1
Log loss 2.4029 1.802 Lower
Cohen's kappa 0.8507 0.8934 1
MCC 0.8604 0.8939 1
Specificity 1 0.9545 1
AUC 0.95 0.95 1
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From Table 2, It is proved that the logistic regression model shows an acceptable performance in
terms of binary classification. That’s why logistic regression is preferred as a classification machine
learning algorithm.

11.1.5 Performance Comparison

In this study, the binary classification was done based on the logistic regression algorithm, where 0
means no liquefiable and 1 means liquefiable. In Table 3, the actual and predicted results for testing
and training data are given.

Table 3: Comparison between analytical result and result predicted using ML

Actual and Predicted result for Training data
Actual Predicted Actual Predicted Actual Predicted Actual Predicted

0 0 1 1 0 0 1 1
0 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 0
0 0 1 1 1 1 1 1
1 1 1 0 1 1 0 0
1 1 0 0 1 1 1 1
1 1 1 1 0 0 1 1
1 1 0 0 0 0 1 1
1 1 1 1 0 0 1 1
0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 1 0 1 1
0 0 1 1 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1

Actual and Predicted data For Testing data
Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0
1 1 0 0 1 0 0 0
0 0 1 1 1 1 1 1
1 1 0 0 1 0 0 0
1 1 1 1 1 1
1 1 0 0 1 1
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Careful visualization proved that,  among the testing dataset only 2 locations are falsely predicted
(more details  on figure  5) and among the training datasets,  6  locations  predicted as  wrong.  The
validation of such kind of binary classification study depends on the performance indices based on the
comparison  of  result  obtained  by  analytical  method  (actual)  and  by  soft  computing  techniques
(predicted). The performance indices for both testing data and training data are mentioned on the
Table 2.

12.CONCLUSIONS
It  is  discovered  in  this  study  that  performance  indicators  alone  are  insufficient  for  evaluating
classification performance. There are also more effective ways to evaluate the model validation and
classification  capability,  such  as  using  ROC curves  and  confusion  matrices.  Thus,  a  number  of
performance indicators are employed in this study, and the results demonstrate that logistic regression
performs well in both the training and testing datasets when it comes to classifying soil liquefaction.
Additional results are enumerated below:  

i. This study used logistic regression methods based on grid search cross validation procedures
to accomplish its  purpose of examining how effective logistic  regression is  in  accurately
forecasting the liquefaction potential.

ii. This study shows the logistic regression model has an accuracy to predict soil liquefaction of
93.3% for testing data and 95% for training data.

iii. This model has an AUC value of 0.95 for both training and testing data prediction. With an
AUC of 0.95, the model appears to have a high degree of accuracy in differentiating between
the  two  classes.  It  provides  compelling  evidence  of  the  model's  predictive  power  with
minimal overlap, few misclassifications.

iv. The confusion matrix indicates that out of the 150-input data, the developed model correctly
predicts 142 sample data, while only 8 sample data are incorrectly classified.
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