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ABSTRACT
Drought is a major threat to food and water security, especially in regions that are prone to low and
erratic precipitation. In order to monitor and assess drought conditions, various drought indices have
been developed, among which the standardized precipitation index (SPI) is the most widely used.
However,  the  choice  of  probability  distribution  for  calculating  SPI  may  affect  its  accuracy  and
reliability. The current study is an attempt to evaluate the performance of four probability density
functions: gamma, lognormal (LN), Weibull, and generalized extreme value (GEV) distributions, for
fitting  the  precipitation  data  from  three  meteorological  stations,  namely  Bogra,  Dinajpur,  and
Rangpur, in the northwestern region of Bangladesh. The distributions are fitted to the data using
maximum likelihood estimators and compared using Kolmogorov-Smirnov (K-S), Anderson-Darling
(A-D), and Chi-Square (Chi-Sq) tests. The best-fitted distribution function is selected on the basis of
the lowest  combined ranking score  for  each case.  The results  show that  out  of  108 cases,  GEV
distributions provide the best fit for 64% of cases, while the LN, Weibull, and Gamma distributions
are only suitable for 9%, 8%, and 4% of the cases, respectively. The analysis highlights that the GEV
distribution has a significant superiority over other distributions, regardless of the locations and time
periods under consideration. The fact that GEV is identified as the most appropriate fit across all time
scales implies that it captures the distribution of extreme values in the precipitation data well. The
stability  of  SPI  values  with  the  GEV  distribution  as  time  scales  increase  suggests  that  these
distributions may be considered more reliable in representing longer-term drought conditions without
overemphasizing  extreme  conditions.  Furthermore,  it  has  also  been  seen  that  the  lognormal  and
Weibull distributions can't accurately show extreme events that happen over shorter periods of time
because their SPI values are much higher than those of the gamma and generalised extreme value
distributions.  However,  when considering longer  time periods,  both distributions  have shown the
potential to accurately represent severe events, indicating a decrease in the tendency to overestimate
or underestimate dry and wet periods. Nevertheless, the current study ultimately recommends using
the GEV distribution to compute the Standardized Precipitation Index (SPI) in the study area. This
approach will enhance drought prediction and early warning systems and provide more precise data
for planning, designing and executing drought mitigation strategies.
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1. INTRODUCTION
The insufficiency of rainfall within a certain geographic region may be described as a drought, a topic
of considerable importance in the present era marked by an increased occurrence of climate change
phenomena, including in Bangladesh. Since independence, the nation has experienced high droughts,
impacting agricultural output, human welfare, animal populations, land resources, public health, and
employment. Effective management strategies rely on comprehensive data on drought magnitude,
intensity, and duration, which can be obtained using drought indices (Mahmoudi et al., 2019).

Drought indices are of paramount importance in the observation and evaluation of drought conditions
owing to their capacity to facilitate the complicated relationship among numerous climatic variables.
(Angelidis et al., 2012). Various indices are frequently employed for the monitoring of different types
of droughts. For instance,  while the palmer drought severity index (PDSI)  (Palmer, 1965) and the
standardized precipitation index (SPI)  (McKee et al., 1993) are used to assess precipitation-derived
meteorological  droughts,  the  standardized  runoff  index  (SRI)  is  utilized  to  study  hydrological
droughts that are based on runoff or streamflow  (Shukla & Wood, 2008). On the other hand, the
standardized soil moisture index (SSI) and agricultural standardized precipitation index (aSPI) are
widely employed for the monitoring of agricultural droughts (Hao & AghaKouchak, 2013; Tigkas et
al., 2019).  Furthermore, the standardized supply and demand water index (SSDWI) is employed to
assess socio-economic droughts (Zhou et al., 2022), among other applications. 

The standardized precipitation index (SPI) is a popular choice among researchers due to its simplicity,
spatial  consistency,  probabilistic  nature,  and  adaptability  to  user  interests  (Edossa  et  al.,  2010),
especially for low data requirements. SPI is calculated using various distribution functions, with the
gamma  distribution  being  the  most  commonly  used.  However,  the  suitability  of  theoretical
distributions varies across geographical regions (Cindric et al., 2012; Hong et al., 2013; Vergni et al.,
2017). For example,  Pearson type III in America is more suitable  (Guttman, 1999), while  Weibull-
type distributions offer better fits in Europe  (Sienz et al.,  2012). In Guadiana (Portugal),  the log-
normal distribution yields nearly identical results to gamma distributions (Angelidis et al., 2012). The
generalized normal distribution also performs better in Brazil (Blain & Meschiatti, 2015). According
to  the  study conducted  by  Bhakar  et  al.  (2008),  it  was  determined that  the  Gumbel  distribution
provided the most accurate match for modelling monthly maximum rainfall in India. In another study,
Amin et al.  (2016) used annual maximum precipitation data obtained from a daily sample. Their
analysis revealed that  the Log-Pearson type-III  distribution exhibited the most  optimal fit  for  the
northern parts of Pakistan.

A study conducted in Bangladesh  (Khudri & Sadia, 2013) discovered that the generalized extreme
value  and  generalized  gamma  four  parameter  distributions  exhibited  the  greatest  degree  of
compatibility for around 50% of the assessed stations. In contrast, none of the other distributions have
consistently shown compatibility with the other stations. Based on the study conducted by Mandal &
Choudhury (2015), it was observed that normal distributions yielded the most precise alignment with
the data for the annual, post-monsoon, and summer seasons. On the other hand, it was noted that the
pre-monsoon, monsoon, and winter seasons had the highest degree of conformity with the lognormal,
Weibull,  and Pearson type V probability  distributions,  respectively.  A recent  study conducted by
Rabby & Adhikary (2022) in the country’s northwestern part concluded that log-normal distribution
might be a viable alternative to traditional gamma distribution for drought assessment. Therefore, the
careful selection of distribution functions is of the utmost importance in ensuring a precise estimation
of the SPI.

Up to the present time, several studies in different parts of Bangladesh have assessed precipitation
data using various probability distributions. However, none of these studies have considered including
these distributions in SPI-based drought assessment. In order to fill  this gap, the objective of the
current study is to identify the most suitable probability density functions for accurately characterizing
the  precipitation  data  as  well  as  computing  drought  events  in  the  study  region.  The  identified
probability density functions will then be incorporated into the calculation of the SPI to enhance the
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representation of the data across different time series and scales. The study finally aims to assess the
viability of using alternative probability distribution functions in  addition to  the standard gamma
distributions to calculate SPI-based drought events.

2. MATERIALS AND METHODS 

2.1 Study Area and Precipitation Data
Bangladesh, being a South Asian country, has approximately 170 million inhabitants and 148,460 km2

of land area (Hosain & Amin, 2023). Droughts are more common in the northwestern areas (Dey et
al., 2012; Mondol et al., 2016).  The northwest region of Bangladesh receives 1,400 mm of rainfall
annually, while the northeast part receives around 4,400 mm. The monsoon season accounts for 75%
of total rainfall  (Alamgir et al., 2015).  The northwestern region of Bangladesh is equipped with six
meteorological stations, namely Bogra, Dinajpur, Ishurdi, Rajshahi, Rangpur, and Saidpur, which are
operated by the Meteorological Department of Bangladesh. For the current research, three stations in
the region, namely Bogra, Dinajpur, and Rangpur, have been chosen. Fig. 1 shows the study area with
the locations of selected stations.

Figure 1: Meteorological stations considered for this study

Monthly rainfall  data for the selected stations were collected from the Bangladesh Meteorological
Department (BMD). Table 1 presents the details of the selected meteorological stations used in this
study. 

Table 1: Details of the selected meteorological stations

Station
No.

Name of the
Stations Area (km2) Latitude Longitude Data Type Period

1 Bogra 2898.68 24° 51ʹ N 89° 22ʹ E Rainfall 1975-2019
2 Dinajpur 3444.30 25° 39ʹ N 88° 41ʹ E Rainfall 1975-2019
3 Rangpur 2400.56 25° 44ʹ N 89° 14ʹ E Rainfall 1975-2019
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2.2 Calculation of Standardized Precipitation Index (SPI)
SPI was first proposed by  McKee et al. (1993) and is the most  widely adopted index for drought
estimation among the researchers today. It is basically based on the probability of precipitation for
multiple time scales, e.g., one-, three-, six-, nine-, and twelve-months, etc., and is usually calculated
by fitting the cumulative precipitation with an appropriate probability density function to characterize
the lack of precipitation. The calculation procedure of SPI is detailed in the following:

For a given time series of precipitation, the cumulative precipitation for a certain time scale at the n-th
month during different years is calculated by:

xa
n ( t )= ∑

i= j−a+1

j

x (i) , j=12 (t−1 )+n (1)

Where, x is the monthly precipitation vaule of N years, t is the annual index (from 1 to N), and m is a
given month (January, February,..., December)

A probability density function is then used to fit the cumulative precipitation series of a particular
distribution. Table 2 provides a list of the types of distributions in which cumulative precipitation data
is fitted to their corresponding probability density functions.

Table 2: Distributions used to compute Standardized Precipitation Index (SPI)

Distributio
n Probability Density Function (PDF) Cumulative Distribution

Function (CDF)

Gamma f ( x )= x
k−1 e−x/θ

θk Γ (k ) F ( x )=
γ (k , x

θ
)

Γ (k )
Generalized

Extreme
Value
(GEV)

f ( x )= 1σ {[1+ξ ( x−μσ )]−( 1+ξξ )
e

−{[1+ ξ( x−μσ )]−( 1ξ)}} F ( x )=exp{−[1+ξ( x−μσ )]
−1
ξ }

Lognormal f ( x )= 1
√2π σx

exp{− (lnx−μ )2

2σ2 } F ( x )=( lnx−μσ )
Weibull f ( x )= k

λ ( xλ )
k−1

exp {−( xλ )
k} F ( x )=1−exp {−( x )k }

The cumulative probability of a precipitation event occurring over a specified time period and month
is  then  calculated,  and  the  SPI  value  is  achieved  by  converting  the  CDF to  a  standard  normal
distribution using Eq. (2).

xk=φ
−1 (k ) (2)

Here, the quantile of the cumulative probability k is represented as xk, whereas the inverse function of
the cumulative distribution function (CDF) for a normal distribution is indicated as φ -1. The drought
category based on the Standardized Precipitation Index (SPI) is shown in Table 3.

Table 3: Drought category based on SPI values

SPI Value Classification
-0.99 to 0.00 Mild drought
-1.49 to -1.00 Moderate drought
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-1.99 to -1.50 Severe drought
 ≤2.00 Extreme drought
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2.3 Parameters Estimation by Maximum Likelihood
Estimation of the distribution parameters are essential, and to obtain that a number of approaches,
such as the method of moments, L-moments, and maximum likelihood (ML), have been established in
the  past.  Researchers  continue  to  choose the maximum likelihood estimator  (MLE)  owing to its
superior performance across a range of probability distributions (Ashkar & Nwentsa, 2007; Park et al.,
2009).  The MLE is a statistical technique used to ascertain optimal parameter values for a given
model.  The  parameter  values  are  determined  in  a  manner  that  optimizes  the  probability  of  the
observed data being generated by the process represented by the model.

Let a random sample of size n, denoted as X1, ..., Xn, drawn from the random variable X. The density
function (or probability function) of X, denoted as f ( x|θ ), depends on a parameter θ that belongs to
the parameter space Θ. The likelihood function of θ that corresponds to the observed random sample
is expressed as:

L (θ ;x )=∏
i=1

n

f (xi|θ ) . (3)

The ML estimator of θ is the value θ̂∈Θ that maximizes the likelihood function L(θ ; x) (Bolfarine
& Sandoval 2001). In practice, the logarithm of L(θ ; x) is generally used.

l (θ; x )=log L (θ ; x )=∑
i=1

n

ln f (x i|θ ) . (4)

The ML estimates θ̂ are those that maximize l(θ ; x), and θ̂ is called ML estimator (MLE) of θ .

2.4 Goodness-of-Fit Test
Goodness-of-fit is a statistical method that evaluates the compatibility between observed data and a
theoretical distribution from a normal population. It helps in predicting future trends and patterns in
decision-making processes. Though there are various methods available to carry out goodness-of-fit
tests,  the  Chi-square  test,  the  Kolmogorov-Smirnov test,  and the Anderson-Darling test  are  quite
famous (Arshad et al., 2003; Seier, 2002). These tests are used to determine the optimal probability
distribution, with a significance level of α=0.05. In this research, the null hypothesis (H0) assumes
that the observed monthly rainfall data corresponds to a prescribed distribution, while the alternative
hypothesis (H1) assumes that the data does not adhere to the prescribed distribution. 

2.4.1  Kolmogorov-Smirnov Test
Kolmogorov-Smirnov  (K-S)  test  (Karson,  1968) is  a  non-parametric  statistical  method  to  check
whether a sample is from a specific distribution (Melesse et al., 2010) within a population and uses a
null and alternative hypothesis as well as an alpha level of significance. This test is based on the
empirical distribution function (ECDF). Given N ordered data points  Z1 , Z2 ,... , Z N,  the ECDF is
defined as

EN=
n (k )
N

(5)

Where  n(k ) is the number of points less than  Zi and the  Zi represents a set of values arranged in
ascending order. This is a step function that causes an increase of 1/N  at the value of each ordered
data point. The K-S test statistic is defined as follows:
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D=max
1≤ i≤ N [F (Z i )−

i−1
N
, i
N

−F (Z i )] (6)

Where F is the theoretical cumulative distribution function of the distribution being tested and D is
the test statistic.  If D is less than the critical value, it accepts the null  hypothesis.  This evidently
demonstrates that the hypothesis regarding the distribution form is accepted.

2.4.2  Anderson-Darling Test
The Anderson-Darling (A-D) test (Stephens, 1974) is a modified version of the Kolmogorov-Smirnov
(K-S) test that assigns more significance to the extreme values in the distribution. The Kolmogorov-
Smirnov (K-S) test exhibits more sensitivity towards discrepancies that may arise in proximity to the
central  region  of  the  distribution,  while  the  Anderson-Darling  (A-D)  test  demonstrates  higher
sensitivity towards deviations detected in the tails. The Anderson-Darling test statistic is formally
defined as follows:

A2=−N− 1
N∑

i=1

N

(2 i−1 ) [ln F ( X i )+ln (1−F (X N−i+1 )) ] (7)

F and  Xi represents the cumulative distribution function of the given distribution and ordered data
respectively. The determination of critical values for the Anderson-Darling test is conditional on the
particular distribution under examination. The test being conducted is a one-sided test,  where the
hypothesis on the distribution conforming to a certain form is deemed invalid if the test statistic,  A
exceeds the critical value.

2.4.3  Chi-square Test
The  Chi-square  test  (Ridgman,  1990) assumes  a  large  sample  size,  allowing  the  chi-square
distribution to accurately approximate the test statistic's distribution, and is defined as:

χ2=∑
j=1

k (O j−E j )
2

E j
(8)

Where,
Oj =  observed  frequency  in  ‘j’  observations  (1,  2,  …….,  k)
Ej =  expected  frequency  in  ‘j’  observations  (1,  2,  …….,  k)
Calculated  by  Ej =  F(X2)  –  F(X1)
F = the CDF of the probability distribution being tested.

The observed number of observation (k) in interval ‘j’ is computed from equation given below:

K=1+ log2n (9)

Where, n = sample size.

This equation is specific to continuous sample data and determines if a sample is from a population
with a specific distribution.

3. RESULTS AND DISCUSSION
One of the main goals of this current study is to identify the best-fit probability distribution function
for each station at the specified time scales for each month of the year using monthly precipitation
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data  extracted  from the selected three meteorological  stations  located in  the  northwest  region of
Bangladesh from 1975 to 2019.  
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Table 4: Best-fit results of the selected stations at multiple time scales

Stn SL
No. Month

6 Month Time Scale 12 Month Time Scale 24 Month Time Scale
K-S A-D Chi-Sq Sum of Ranks K-S A-D Chi-Sq Sum of Ranks K-S A-D Chi-Sq Sum of Ranks

Bo
gr

a

1 Oct GEV (0.056) GEV (0.122) GEV (1.08) GEV (3) W (0.075) GEV (0.283) GEV (1.47) GEV (4) LN (0.084) GEV (0.395) LN (1.12) LN (5)
2 Nov GEV (0.068) GEV (0.216) GEV (0.432) GEV (3) GEV (0.063) GEV (0.215) GEV (1.59) GEV (3) G (0.079) GEV (0.373) G (1.41) G (5)
3 Dec GEV (0.072) GEV (0.208) GEV (1.13) GEV (3) W (0.075) GEV (0.232) LN (1.78) GEV (5) LN (0.080) GEV (0.358) GEV (1.33) GEV (5)
4 Jan GEV (0.067) GEV (0.377) G (1.23) GEV & LN (6) W (0.076) GEV (0.221) W (1.19) W (4) LN (0.074) GEV (0.335) LN (0.592) LN (5)
5 Feb GEV (0.063) GEV (0.189) W (0.417) GEV (5) GEV (0.078) GEV (0.267) G (0.685) GEV & G (6) LN (0.071) GEV (0.341) LN (0.463) LN (5)
6 Mar W (0.071) GEV (0.18) G (0.798) GEV (5) GEV (0.076) GEV (0.31) G (1.78) GEV & G (5) LN (0.065) GEV (0.282) G (0.528) LN (5)
7 Apr W (0.082) GEV (0.237) LN (0.775) GEV (6) GEV (0.054) GEV (0.137) GEV (0.932) GEV (3) GEV (0.054) GEV (0.19) W (0.709) GEV (5)
8 May LN (0.071) GEV (0.26) G (1.41) LN (5) GEV (0.067) GEV (0.271) G (1.13) GEV (5) GEV (0.073) GEV (0.227) GEV (0.454) GEV (3)
9 Jun LN (0.09) GEV (0.337) LN (1.98) LN (5) GEV (0.088) GEV (0.441) GEV (4.75) GEV (3) G (0.061) GEV (0.254) G (0.403) G (4)
10 Jul W (0.083) GEV (0.267) G (1.93) W (5) GEV (0.053) GEV (0.164) G (0.178) GEV (5) W (0.056) G (0.257) GEV (1.13) GEV (5)
11 Aug GEV (0.061) GEV (0.216) W (0.608) GEV (6) W (0.048) GEV (0.231) W (0.672) GEV & W (5) W (0.106) W (0.527) W (0.881) W (3)
12 Sep GEV (0.08) GEV (0.271) GEV (0.972) GEV (3) W (0.081) GEV (0.233) G (0.719) GEV (5) GEV (0.082) GEV (0.363) LN (2.38) GEV (4)

D
in

aj
pu

r

1 Oct W (0.072) GEV (0.319) W (1.56) W (4) W (0.069) GEV (0.285) G (1.25) GEV & G (6) GEV (0.072) GEV (0.179) GEV (0.76) GEV (3)
2 Nov GEV (0.074) GEV (0.295) G (0.835) GEV (4) W (0.064) GEV (0.253) GEV (0.249) GEV (4) GEV (0.07) GEV (0.174) GEV (0.103) GEV (3)
3 Dec W (0.116) GEV (0.495) GEV (2.42) GEV (4) W (0.068) GEV (0.301) G (1.3) W (5) GEV (0.074) GEV (0.176) GEV (0.513) GEV (3)
4 Jan W (0.103) GEV (0.423) LN (4.04) LN (5) GEV (0.068) GEV (0.28) G (1.02) GEV & G (6) GEV (0.059) GEV (0.168) GEV (0.385) GEV (3)
5 Feb W (0.076) G (0.391) W (0.228) G & W (6) W (0.069) GEV (0.224) G (0.567) W (6) W (0.079) GEV (0.183) G (0.771) GEV & G (6)
6 Mar LN (0.069) GEV (0.17) G (1.57) GEV (5) W (0.061) GEV (0.232) G (0.238) W (6) GEV (0.072) GEV (0.201) LN (0.791) GEV (5)
7 Apr GEV (0.053) GEV (0.125) G (0.453) GEV (4) GEV (0.085) W (0.341) G (2.41) GEV (5) GEV (0.06) GEV (0.225) G (0.484) GEV & G (5)
8 May GEV (0.079) GEV (0.263) GEV (1.26) GEV (3) W (0.067) GEV (0.244) GEV (0.629) GEV (4) GEV (0.063) GEV (0.176) GEV (3.64) GEV (3)
9 Jun GEV (0.075) GEV (0.18) W (0.662) GEV & W (5) GEV (0.064) GEV (0.182) W (1.80) GEV  (4) GEV (0.053) GEV (0.125) LN (0.349) GEV (5)
10 Jul GEV (0.075) GEV (0.187) LN (1.5) GEV (5) GEV (0.063) GEV (0.182) GEV (0.295) GEV (3) W (0.077) GEV (0.358) G (0.216) GEV (5)
11 Aug GEV (0.079) W (0.322) W (0.727) W (4) W (0.106) GEV (0.411) G (0.251) G (6) GEV (0.053) GEV (0.135) LN (0.699) GEV (5)
12 Sep GEV (0.068) GEV (0.303) GEV (4.59) GEV (3) GEV (0.08) GEV (0.357) GEV (1.93) GEV (3) GEV (0.065) GEV (0.163) GEV (1.69) GEV (3)

R
an

gp
ur

1 Oct GEV (0.072) LN (0.274) W (1.59) GEV (5) LN (0.095) GEV (0.289) GEV (1.96) GEV & LN (5) GEV (0.052) GEV (0.158) GEV (1.35) GEV (3)
2 Nov W (0.078) G (0.288) W (1.34) W (6) W (0.097) GEV (0.278) GEV (1.09) GEV (5) GEV (0.052) GEV (0.158) GEV (0.48) GEV (3)
3 Dec GEV (0.096) GEV (0.527) G (0.228) GEV & G (5) LN (0.103) GEV (0.305) GEV (1.36) LN (5) GEV (0.059) GEV (0.166) GEV (0.286) GEV (3)
4 Jan W (0.072) GEV (0.161) LN (0.396) GEV (6) LN (0.097) GEV (0.247) GEV (1.36) GEV & LN (5) GEV (0.063) GEV (0.181) GEV (0.29) GEV (3)
5 Feb GEV (0.077) GEV (0.32) LN (0.79) GEV (5) LN (0.096) GEV (0.288) GEV (1.34) GEV (4) GEV (0.056) GEV (0.147) GEV (0.288) GEV (3)
6 Mar GEV (0.05) G (0.152) GEV (1.42) GEV (4) GEV (0.069) GEV (0.236) GEV (1.25) GEV (3) GEV (0.054) GEV (0.15) GEV (0.494) GEV (3)
7 Apr GEV (0.109) GEV (0.589) GEV (5.1) GEV (3) LN (0.081) GEV (0.337) W (2.0) GEV & LN (6) GEV (0.074) GEV (0.204) GEV (1.8) GEV (3)
8 May GEV (0.062) GEV (0.164) LN (1.22) GEV (4) W (0.082) GEV (0.386) G (1.43) G (6) GEV (0.053) GEV (0.128) GEV (0.762) GEV (3)
9 Jun LN (0.095) LN (0.437) W (3.39) LN (6) GEV (0.094) GEV (0.474) LN (3.69) GEV (4) GEV (0.064) GEV (0.217) GEV (0.733) GEV (3)
10 Jul GEV (0.077) GEV (0.621) GEV (1.08) GEV (3) GEV (0.06) GEV (0.159) LN (0.712) GEV (4) GEV (0.048) GEV (0.135) LN (1.23) GEV & LN (5)
11 Aug GEV (0.102) GEV (0.57) W (4.9) GEV & LN (6) GEV (0.105) GEV (0.579) LN (2.88) GEV (4) GEV (0.088) GEV (0.346) GEV (2.57) GEV (3)
12 Sep LN (0.122) GEV (0.618) GEV (0.645) LN (5) GEV (0.105) GEV (0.66) LN (1.5) GEV (4) GEV (0.099) GEV (0.304) GEV (6.04) GEV (3)
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The best-fit  results of K-S, A-D, and Chi-Sq. tests, as well as the best-scored results of proposed
distributions at multiple time scales of precipitation data, are presented in Table 4. The table displays
the test statistic results of the best-fit distribution type in probabilities for each model selection tool
(K-S, A-D, Chi-Sq.). For each selection tool, all developed probability distributions are ranked, with
rank 1 indicating the best fit. The ranking results of the three tools are combined to calculate a ranking
score.  The  best-fit  distribution  model  for  each  station  and  month  is  chosen  by  identifying  the
distribution model with the smallest ranking score. There was a total of 108 (3×36) cases. As can be
seen from the table, the GEV distribution gives the best fit in most of the cases, followed by LN and
Weibull. The weak fitting of the LN, Weibull, and Gamma distributions is usually expected as they
have less flexibility in modeling the shape of the tail of the data than the GEV distribution, which has
three parameters in it. The GEV distribution has a shape parameter that captures the frequency of
extreme events, unlike other distributions. The lognormal distribution implies more extreme values,
while the Weibull and gamma distributions indicate a lower likelihood for positive shape parameters.
The GEV distribution can accommodate both high and low frequencies of extreme events, depending
on the shape parameter, thus yielding the best fit among all the stations and at various time scales.

Figure 2: Percent best-fit of Generalized Extreme Value (GEV), Lognormal (LN), Weibull (W), and
Gamma (G) distributions over 6,12-, and 24-month time scales at the selected stations

A comparative analysis of the percentage of best fit for the selected distributions at multiple time
scales for each station is shown in Fig. 2. The GEV distribution appears to be the most significant
across  all  stations  and  periods,  particularly  over  24  months.  The  LN,  Weibull,  and  Gamma
distributions also show increased significance over longer periods. These trends demonstrate that the
GEV distribution is likely to be the most dominant for longer periods, followed by the LN, Weibull,
and Gamma distributions.
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Figure 3: Comparison of empirical and theoretical probability distributions
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Fig. 3 presents a comparison of the running sum of 6 months of precipitation data for the empirical
and  four  theoretical  cumulative  probability  distributions  (Gamma,  lognormal,  Weibull,  and
generalized extreme value) for a single time series. All the theoretical distributions appear to provide
a good fit for the empirical CDF. However, the generalized extreme value distribution is found to
provide the best fit among them.
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Figure 4: Drought index SPI for the time series (a) Bogra and (b) Dinajpur for the 1975-2019 period
at 6-month and 24-month time scale

The  gamma  distribution  is  the  most  commonly  used  probability  density  function  to  model
precipitation data for calculating the drought index SPI. However, it is worth examining if the SPI can
be  modelled  equally  well  or  better  by  the  lognormal,  Weibull,  and  generalized  extreme  value
probability distributions, apart from the traditional gamma distribution across multiple time scales. In
Fig. 4, SPI values are obtained using the above-mentioned distributions at  6- and 24-month time
scales  for  Bogra  and Dinajpur  stations.  It  is  observed at  shorter  time  scales  that  lognormal  and
Weibull distributions both generate larger values of SPI quite often at very dry or very wet periods,
while at larger scales it is hardly seen for both stations. It means that the Weibull and lognormal
distributions are primarily liable for over-estimating and under-estimating the wet and dry periods at
shorter scales in extreme cases. On the contrary, the generalized extreme value (GEV) distribution
produces  almost  the  same  SPI  values  as  the  gamma  distribution,  providing  a  more  stable
representation  of  extreme  precipitation  events  without  overestimating  the  severity  of  drought  or
excessive wetness. The stability  of  SPI  values  based on the gamma and other distributions  (LN,
Weibull, and GEV in the current study) with increasing time scales demonstrates the fact that these
distributions  become  more  reliable  in  representing  longer-term  drought  conditions  without
exaggerating extreme conditions.

4. CONCLUSIONS
The standardized precipitation index (SPI) is considered to be the most widely used index to assess
drought  conditions  across  many  parts  of  the  world  due  to  its  simplicity  of  use  and  lower  data
requirements.  Only  precipitation  data  is  needed  to  obtain  SPI  values.  In  general,  the  gamma
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distribution is used to calculate the SPI values, and now it has been brought into question whether to
use it in the calculation process as many other probability distribution functions have shown fitting
the precipitation data well across various regions and multiple timescales. Therefore, the current study
aims to explore  the  suitability  of using alternative probability  distribution functions  such as  LN,
Weibull,  and  GEV  to  calculate  SPI-based  drought  events.  Three  meteorological  stations  in  the
northwestern region of Bangladesh, namely Bogra, Dinajpur, and Rangpur, have been considered for
this study, as these areas usually receive quite less precipitation than any other parts of the country
over a longer period of time. Maximum likelihood estimators are used to obtain the parameters of the
distributions.  In  order  to  observe  the  best  fitting  distribution  for  the  precipitation  data,  the
Kolmogorov-Smirnov (K-S) test, the Anderson-Darling (A-D) test, and the Chi-Square (Chi-Sq.) tests
are performed. The tests are conducted on 6-, 12-, and 24-month time scales for each month at the
three stations. Among 108 cases, 64% show the best fit for GEV distribution, while LN, Weibull, and
Gamma distribution exhibit only 9%, 8%, and 4%, respectively. The other 15% signifies 16 cases,
where  15  cases  yield  the  best  fit  for  the  GEV distribution  along  with  another  distribution  (LN,
Weibull,  or  Gamma).  It  emphasizes  that  the  GEV distribution has  a  clear dominance over other
distributions,  irrespective of any locations  or  time periods considered.  LN, Weibull,  and Gamma
distributions are also seen to fit best to the precipitation data at higher time scales but yet seem to be
insignificant  when  compared  with  the  GEV  distribution.  Moreover,  the  lognormal  and  Weibull
distributions are found to be incapable of capturing extremes at shorter time scales, as they yield
comparatively larger SPI values than those of the gamma and generalized extreme value distributions.
However, at higher time scales, both the distributions show improvement in capturing the extremes,
which signifies the reduction of the overestimation and underestimation of the dry and wet periods.
The findings of the study also show that the GEV distribution remains the best choice as it offers
greater stability in presenting extreme precipitation events, which conclusively proves the viability of
using alternative probability distribution functions.
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