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ABSTRACT
In  the  design  phase  of  a  construction  project,  enhancing  the  technical  designs,  structural
configurations,  and  individual  components  is  one  of  the  key  engineering  activities.  Structural
optimization  allows  engineers  to  explore  efficient  design  alternatives,  but  manual  optimization
process  is  time-consuming  and  becomes  complicated,  especially  for  structures  with  numerous
variables and complex designs. However, this complexity can be mitigated through automation using
programming  languages  and  heuristic  mathematical  optimization  procedures,  whichoffer  more
reliable and efficient results when correctly applied. This approach still requires multiple iterations to
achieveoptimal outcomes for the specified variables. Hence,  researchers have shown considerable
interest  in  algorithms  that  are  robust,  easy  to  implement,  and  exhibit  rapid  convergencetoward
solutions in the structural  optimization problem. This study aims to explore the suitability of the
Particle Swarm Optimization (PSO) method, a widely used optimization algorithm, for optimizing
three-dimensional truss structures. The research involved the analysis and optimization of a 72-bar
spatial  truss  structure  and a  120-bar  dome-shaped truss  structure,  with the  goal  of  achieving the
minimum  weight  of  the  structure  while  adhering  to  permissible  stress  and  nodal  displacement
constraints.  OpenSeesPy,  a  Python  interpreter  for  the  structural  analysis  software  framework
OpenSees,  was  implemented  to  analyze  both  truss  structures.  To  avoid  interruptions  by  internal
processes within the Windows operating system and other applications, the analysis and optimization
process was done on the Google Colab Notebook platform.To enhance the performance of the PSO
algorithm, the influences of PSO algorithm parameters, including the number of particles,  cognitive
coefficient  c1, social coefficient  c2, and inertia weight  w , on simulation runtime, the weight of the
structure, and the number of iterations required to achieve the minimum weight were observed. After
numerous trials, thestudy concludedthat the best range for the values of cognitive coefficient c1 and
social coefficient  c2 to be between 0.8 and 1.0 and the inertia weight  w  to be equal to 0.8, and the
number  of  particles  to  be  between  40  to  50.Using  these  optimized  parameter  values,  both  truss
structures were finally optimized and the outcomes were compared with the results achieved by other
researchers employing alternative optimization methods. For the 72-bar spatial truss structure, the
weight of the optimized structure was found to be 369.654 lb, which was consistent with the findings
of  other  researchers  utilizing  other  algorithms.  The  cross-sectional  area  of  each  member  in  the
optimized structure also showed similar patterns to the findings of other researchers. For the 120-bar
dome-shaped truss structure, the weight of the optimized structure was found to be 31974.9 lb, which
was slightly better than the results found by other researchers. These findings finally conclude that the
PSO algorithm can effectively be used for the optimization of truss structures. 

Keywords:Particle Swarm Optimization, Structural Optimization, Truss Optimization, OpenSeesPy,
Python Structural Analysis
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1. INTRODUCTION
Truss structures are widely used in the construction of bridges, roofs, towers, cranes, space frames,
etc. While designing a structure, an engineer must ensure both structural integrity and functionality
while  maintaining  cost-effectiveness  as  much  as  possible.  Truss  optimization  is  the  process  of
determining the most  efficient  design of the structure.  The primary objective of  the optimization
process is to achieve the most lightweight structure without compromising its strength and stability.
Reducing  the  weight  of  the  structure  not  only  minimizes  material  costs  but  also  facilitates
transportation and the installation process, leading to an overall enhancement in structural efficiency.

Tejani  et  al.  (2018)have  stated  that  truss  optimization  can  be  classified  into  three  types:  size
optimization, shape optimization, and topology optimization. Size optimization involves finding the
optimum cross-sectional  areas  of  the  elements  of  the  structure.  Shape  optimization  refers  to  the
process of changing node coordinates to determine the optimum shape of the structure. Topology
optimization deals with the process  ofadding and removing elements and nodes to  find the most
efficient shape of the structure  (Tejani et al., 2018).According to  Kochenderfer & Wheeler (2019),
various optimization methods are available, for example, first-order methods, second-order methods,
direct  methods,  stochastic  methods,  and  population  methods.  Within  the  category  of  population
methods,  there  are  several  widely  used  algorithms,  including  genetic  algorithms,  particle  swarm
optimization,  cuckoo  search,  and  ant  colony  optimization,  etc.(Kochenderfer  &  Wheeler,  2019).
Different population methods, including the Chaotic Coyote Algorithm, Harmony Search Algorithm
(HSA), Charged System Search Algorithm, Colliding Bodies Optimization, and Vibrating Particles
System, have been developed by various researchers, includingKaveh (2017), Kaveh et al. (2017),
Kaveh & Mahdavi (2014), and Pierezan et al. (2021). 

The structural optimization process involves a continuous iteration where the values of variables to be
optimized are altered, structural analysis is conducted, and violations of constraints are checked until
an optimized result is achieved. Real-world structures often involve numerous variables and complex
designs, leading to significant runtime requirements for structural analysis. As a result, a high number
of iterations in the optimization process can result in the loss of valuable time, computational power,
and other associated costs,  such as  electricity expenses.  So,  exploring algorithms that  are robust,
memory-efficient,  easy to implement, and exhibit  a  high rate of convergence toward solutions to
structural optimization problems has been of great interest to many researchers. Thus, this article aims
to explore the applicability of the Particle Swarm Optimization (PSO) method in optimizing three-
dimensional truss structures.

Kennedy & Eberhart (1995)have mentioned that the concept behind the particle swarm optimization
method is easy to understand and can readily be implemented through computer programming. It does
not  require  complex  mathematical  operations,  such  as  derivatives,  differentials,  or  continuity
equations  of  the  function  that  needs  to  be  optimized.  This  optimization  approach  is  also  highly
efficient in terms of memory usage while exhibiting rapid convergence towards the solution (Kennedy
& Eberhart,  1995).  According  to  Gad  (2022),  having  a  few parameters  to  deal  with  within  the
algorithm enables it to find optimal solutions quickly. However,in high-dimensional search spaces,
the algorithm exhibits slow convergence towards the global optimum and shows poor-quality results
in large and complex datasets. Numerous researchers have addressed this issue by introducing various
techniques  into  the  algorithm  to  enhance  its  convergence  rate,  for  example,  improved  learning
strategies, mutation techniques, fuzzy logic, Lévy Flight,  opposition-based learning, and surrogate
methods, leading to the development of various modified PSO algorithms(Gad, 2022).

Throughout  the  course  of  this  research,  the  author  was  unable  to  find  any  existing  literature
mentioning  the  impact  of  varying  values  of  PSO  algorithm  parameters  on  optimized  results,
convergence rate, and simulation runtime while optimizing a truss structure. Rather than modifying
the PSO algorithm, this article emphasizesfine-tuning the algorithm parameters and implementing a
simple penalty function for constraint violations to enhance the convergence rate towards the optimal
outcome of the PSO algorithm. 
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This  article  presents  the  implementation  of  the  Particle  Swarm  Optimization  (PSO)  method  for
optimizing three-dimensional truss structures with the aim of minimizing the structure's weight as
much as possible while maintaining its allowable stress limits and deflection limits. The suitability of
the  algorithm is  assessed  by  comparing  the  obtained  results  with  those  derived  from alternative
optimization techniques employed by other researchers in optimizing truss structures.  In  order  to
enhance the rate of convergence towards the optimal solution, the paper investigates different values
of the parameters of the algorithm.

2. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM
The Particle Swarm Optimization (PSO) algorithm was initially presented by Eberhart and Kennedy
in 1995. This algorithm is a stochastic optimization method that emulates the collective behavior of
various animals, such as insect swarms, flocks of birds, shoals of fish, and herds. It is developed based
on  the  fundamental  principles  governing  the  cooperative  food-finding  behaviors  of  these  animal
groups and the adaptation of search patterns by individual members of the group drawing from their
self-learning experiences and those of their peers (Wang et al., 2018).

The PSO algorithm consists of a set of particles. Initially, these particles are defined randomly within
a predefined range of domain of a required objective function. These groups of particles are also often
referred to as swarms. Each particle in these swarms represents the potential solution to the objective
function. As the particles traverse through the search space of the objective function, their positions
are updated in each iteration based on the best position among all particles. Thedetermination of the
optimal position within the search space relies on the fitness values of the particles, which are derived
from the evaluation of the objective function for each particle (Li et al., 2007).illustrates a flowchart
of the PSO algorithm, which is well described by Kennedy & Eberhart (1995), Gad (2022), andWang
et al. (2018). 

The first task is to define N  number of particles, each with a position vector in a D-dimensional space
as denoted in equation (1), along with a velocity vector mentioned in equation (2). Furthermore, the
initial  optimum positions of individual particles are represented in equation (3) and the optimum
position of the swarm i.e., the best position among all particles’ positions, is denoted in equation (4). 

22\* MERGEFORMAT ()

33\* MERGEFORMAT ()

44\* MERGEFORMAT ()

55\* MERGEFORMAT ()

The notation x (i )( t) represents the position of particle Pi in hyperspace at a time step t . To update the
position of the particle  Pi,  the velocity  v (i)(t+1)is added to the current position, as mentioned in
equation (5). The adjustment of the velocity vector is presented in equation (6) and involves updates
based on both the individual best position (the local best position) and the global best position (the
best position among all particles).
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Where  xbest denotes  the  best  position  ever  found  among  all  particles;  w ,c1,  and  c2are  particle
parameters known as inertia weight, cognitive coefficient and social coefficient respectively; and r1
and r2 are random numbers ranging from 0 to 1.

Figure 1: Flowchart of PSO algorithm. Reproduced from Wang et al. (2018)

3. METHODOLOGY
The methodology of this research started with the validation of analysis results obtained from the
OpenSeesPy structural analysis framework, such as axial forces and nodal displacements of a 25-bar
spatial  truss structure,  with respect  to one of the  widely used structural  analysis  software named
STAAD Pro. Subsequently, analysis and optimization of two truss structures, such as a 72-bar spatial
truss structure and a 120-bar dome truss structure, were done. Initially, the values of PSO algorithm
parameters such asc1 , c2 ,w, and the number of particleswere varied and corresponding changes in
simulation runtime, the best-obtained results, and the number of iterations needed to achieve optimal
outcomes were observed. By selecting the optimal values for these parameters, both structures were
analyzed  and  optimized  again  and  the  results  were  compared  with  outcomes  obtained  by  other
researchers using alternative algorithmsto assess the applicability of the PSO algorithm and formulate
recommendations based on the findings.

3.1 Validation of OpenSeesPy Structural Analysis Framework
In this research paper, OpenSeesPy is used to performanalysis of the truss structure, including the
determination  of  node  displacements  and  axial  forces  in  the  bars.  OpenSees  is  an  open-source
software framework which is quite popular in the field of earthquake engineering. Usually, it is used
to simulate the response of a structure under seismic loads. However, it is only available for Linux
operating system users.Moreover, building models and performing analysis using OpenSees require
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knowledge of  TCL,  a  scripting  language.  Thedevelopment  of  OpenSeesPy,  an  OpenSees  Python
interpreter,  has  broadly  extended  the  user  base  to  include  the  Windows  operating  systemuser
community (Zhu, 2018).

To  validate  the  OpenSeesPy  software  framework,  a  truss  consisting  of  25  members,  as  shown
inFigure 2,was analyzed using both STAAD Pro and OpenSeesPy. Different software is built upon
different methods of analysis and design, which can lead to variations in the results among them.
Nevertheless, when the differences in results are minor, it indicates the reliability and consistency of
the  software’s  outputs.  During  the  analysis,  all  members  were  assumed to  have  an  equal  cross-
sectional area of 10 in2and a modulus of elasticity of 10,000 ksi. Four pin supports were assigned at
node 7 to node 10. Two concentrated loads with a value of 100 kips were applied at node 1 acting in
the positive X direction and positive Y direction, respectively.

Figure 2: 25 bar truss structure for validation of OpenSeesPy framework. Source: Li et al. (2007)
The obtained results are presented in  and Table 2. shows the axial forces denoted as P, obtained from
the  structural  analysis  using  StaadPro  and  OpenSeesPy,  whereas  Table  2 shows  the  nodal
displacements denoted as ∆X, ∆Y, and ∆Z in the X axis, Y axis, and Z axis, respectively. In , positive
values indicate tensile forces in the members, while negative values represent compressive forces. In
both software, maximum compressive force and maximum tensile force were found inmember 24
andmember 9, respectively. Remarkably, both software packages showed identical results with very
small deviations in both scenarios. From the analysis of both software, the maximum compressive
force was 118.233 kip, while the maximum tensile force was 128.233 kip. The largest deviation in
axial forces, comparing OpenSeesPy to StaadPro, was only 0.003% inmember 14, with an average
variation of just 0.001% across all members.InTable 2, the maximum nodal displacement was found
at node 1, having a value of 0.579 inches in the positive y-axis. Interestingly, the deviations in the
obtained nodal displacements between OpenSeesPy and StaadPro were slightly more pronounced than
thoseseen in axial forces. The most significant variation in nodal displacement, when comparing the
results obtained from OpenSeesPy to the results obtained from StaadPro, was 2.09%. On average, the
deviation in displacement across all nodes was 0.42%.

Table 1: Validation of axial forces in the members of 25-bar spatial truss structure

Member ID A (i n2)
PStaadPro

(kip)
POpenSeesPy

(kip)
Pvariation

Average
Variation

1 10 -44.778 -44.778 0.000% 0.001%
2 -113.400 -113.400 0.000%
3 44.319 44.318 0.001%
4 17.311 17.311 0.001%
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Member ID A (i n2)
PStaadPro

(kip)
POpenSeesPy

(kip)
Pvariation

Average
Variation

5 33.597 33.597 0.001%
6 -36.269 -36.268 0.000%
7 -27.495 -27.495 0.000%
8 -49.597 -49.597 0.000%
9 128.233 128.233 0.000%
10 -14.017 -14.017 0.001%
11 14.222 14.222 0.001%

Table 1: (continued).

Member ID A (i n2)
PStaadPro

(kip)
POpenSeesPy

(kip)
Pvariation Average Variation

12 9.732 9.731 0.002%
13 -5.357 -5.357 0.000%
14 9.870 9.869 0.003%
15 45.712 45.711 0.001%
16 -40.246 -40.246 0.000%
17 -15.707 -15.707 0.001%
18 -18.200 -18.200 0.001%
19 -38.947 -38.947 0.001%
20 -11.223 -11.223 0.000%
21 69.904 69.904 0.001%
22 109.423 109.423 0.000%
23 4.768 4.768 0.002%
24 -118.233 -118.233 0.000%
25 3.186 3.186 0.001%

Table 2: Validation of nodal displacements of 25-bar spatial truss structure

Node

Staad Pro OpenSeesPy Variation
∆ x
(in)

∆ y
(in)

∆ z
(in)

∆ x
(in)

∆ y
(in)

∆ z
(in)

∆ x
(in)

∆ y
(in)

∆ z
(in)

1 0.4210 0.5790 0.1290 0.4209 0.5787 0.1293 0.03% 0.05% 0.25%
2 0.3870 0.1990 -0.1210 0.3873 0.1985 -0.1206 0.08% 0.25% 0.36%
3 0.0680 0.0120 -0.0270 0.0681 0.0119 -0.0266 0.21% 0.45% 1.37%
4 0.0750 0.0390 -0.1390 0.0754 0.0393 -0.1389 0.59% 0.70% 0.07%
5 -0.0210 0.0290 -0.0250 -0.0213 0.0286 -0.0255 1.19% 1.36% 1.94%
6 -0.0170 0.0220 0.1920 -0.0172 0.0225 0.1916 1.37% 2.09% 0.19%
7 0 0 0 0 0 0 0.00% 0.00% 0.00%
8 0 0 0 0 0 0 0.00% 0.00% 0.00%
9 0 0 0 0 0 0 0.00% 0.00% 0.00%
10 0 0 0 0 0 0 0.00% 0.00% 0.00%

3.2 Analysis & Optimization of Spatial Truss Structures
In this article, the performance of the PSO algorithm is evaluated using two spatial truss structures.
Both the structural analysis module and the PSO algorithm itself were implemented using thePython
programming language and executed on the Google Colab Notebook platform.The study includes
analysis and optimization of a 72-bar spatial truss structure as illustrated in   and a120-bar dome-
shaped truss structure as illustrated in  Figure 4.At first,  in both examples, the values ofalgorithm
parameters such asc1,  c2,  w  and the number of particles were varied and corresponding changes in
simulation runtime,  weight  of  the structure,  and the number of  iterations required to achieve the
minimum weight were observed.Based on these observations, optimal values of these parameterswere
selected. Finally, the two truss structures were analyzed and optimized again using the selected values
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of algorithm parameters and the results were compared with outcomes obtained by other researchers
using alternative algorithms.

3.2.1 Optimization of 72-bar Spatial Truss Structure
illustrates a spatial truss structure that consists of 72 members and 16 nodes. Four pin supports were
assigned at node 1 to node 4. Additionally, three concentrated loads having amagnitude of 5 kipswere
applied at node 17 along the positive x-axis, positive y-axis, and negative z-axis,respectively. The
material's modulus of elasticity was set at 10,000 ksi and density of 0.1 lb/in³. All members were
subjected to a maximum allowable stress within the range of ±25 ksi. Additionally, maximum nodal
displacements were set to a range of ±0.25 in all directions — x-axis, y-axis, and z-axis. The members
of the truss were categorized into 16 groups namely (1)  A1 – A4,  (2)  A5 – A12,  (3)  A13 – A16,  (4)
A17 – A18,  (5)  A19 – A22,  (6)  A23– A30,  (7)  A31– A34,  (8)  A35 – A36,  (9)  A37 – A 40,  (10)
A41 – A 48, (11) A49– A52, (12) A53 – A54, (13) A55 – A58, (14) A59 – A66 (15) A67 – A70, and (16)
A71– A72.

 illustrates the influences of PSO algorithm parameters, including the number of particles,  cognitive
coefficient c1 and social coefficient c2, and inertia weight w , on the simulation runtime, the weight of
the  structure,  and  the  number  of  iterations  required  to  achieve  the  minimum weight.  The  table
illustrates that as the number of particles increased up to 40 particles, better results were obtained and
any further increase showed no significant improvement; however, corresponding simulation runtimes
also  increased  somewhat  proportionally.  The  influence  of  cognitive  coefficient  c1 and  social
coefficient  c2 on the weight of the structure showed no particular pattern. Nevertheless, minimum
weights were obtained when both c1 and c2 lied within the ranges of 0.6 to 0.8 and 1.5 to 4. Notably,
the range of 1.5 to 4 required more than twice the number of iterations compared to the range of 0.6 to
0.8 to achieve the same result. The table additionally demonstrates the impact of inertia weight (w) on
the model's solution, indicating that as  w  increased up to 0.8, the model converged toward a more
optimal solution. However, any further increase in w  led to a deviation from the best solution of the
model. Based on these observations, the optimal values for the algorithm parameters were chosen as
follows: c1 = 0.8, c2 = 0.8, w  = 0.8, and the number of particles = 50 for the final optimization of the
truss structure. 

The 72-bar truss structure has also been optimized by Le et al. (2019), Li et al. (2007), Pierezan et al.
(2021), and Schmit & Farshi (1974). Initially, the weight of the structure was found to be 750.57 lb.
After  optimization,  the  weight  of  the  structure  was  reduced  to  369.65  lb,  indicating  a  50.75%
reduction compared to its initial weight. The results obtained by the PSO algorithm showed a similar
pattern to those found by previous researchers mentioned in Table 4. Li et al. (2007)have applied the
PSO algorithm to optimize the structure and have found the optimized weight  of  the structure is
6818.67 lb, which has significantly differed from those of other researchers. In contrast, this study
achieved notably improved results compared to the findings of Li et al. (2007) using the same PSO
algorithm and found the optimized weight of the structure is 369.654 lb. The consideration of the
minimum andmaximum cross-sectional area of the members,along with thefine-tuning of algorithm
parameterscould be the reasons for this significant improvement. In this research, the minimum and
maximum cross sectional area were set to 0.1 and 5 in2, respectively.However, the influence of initial
consideration on the weight of the optimized structure is out of scope the of this research. 
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Figure 3: 72-bar spatial truss structure. Source: Li et al. (2007)

Table 3: Influence of the PSO algorithm parameters on optimization results for 72-bar spatial truss

Influence of Number of Particles Influence of c1 and c2 Influence of w

Number
of

Particles

Weight
(lb)

Runtime
(sec)

c1 and
c2

Weight
(lb)

Iteration for
Converge to

Solution w Weight
(lb)

Iteration for
Converge to

Solution

5 440.78 24 0.0 756.09 101 0.0 653.136 13
10 389.75 43 0.1 398.44 280 0.1 644.582 35
15 370.08 61 0.2 412.52 238 0.2 637.342 39
20 369.96 79 0.4 372.67 406 0.4 630.467 64
25 369.93 102 0.6 369.92 336 0.6 464.06 437
30 369.67 119 0.8 369.69 451 0.8 369.939 437
35 377.25 160 1.0 376.67 581 1.0 370.207 178
40 369.66 181 1.5 369.92 749 1.5 372.350 639
50 369.65 200 2.0 369.92 652 2.0 372.879 1384
60 369.64 243 3.0 369.97 945 3.0 375.417 1469
70 369.64 286 4.0 369.90 1915 4.0 414.588 117
80 369.91 325 5.0 370.05 2412 5.0 421.645 749
100 369.64 406 10.0 370.31 938

Table 4: Optimization results for 72-bar spatial truss

Variables Optimal Cross-Sectional Areas (in2)

This Article Li et al.
(2007)

Schmit &
Farshi (1974)

Pierezan
et al.

(2021)
Le et al. (2019)

Particle
Swarm

Optimization

Particle
Swarm

Optimization

Structural
Synthesis
Concept

Chaotic
Coyote

Algorithm

Hybrid Method
combining

Electromagnetism
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(PSO) (PSO) and Firefly
Algorithms

A1 – A4 1.856 41.794 2.078 1.990 1.990
A5 – A12 0.510 0.195 0.503 0.563 0.563
A13 – A16 0.100 10.797 0.100 0.111 0.111
A17 – A18 0.100 6.861 0.100 0.111 0.111
A19– A22 1.250 0.438 1.107 1.228 1.228
A23 – A30 0.505 0.286 0.579 0.442 0.442
A31 – A34 0.100 18.309 0.100 0.111 0.111
A35 – A36 0.100 1.220 0.100 0.111 0.111
A37 – A40 0.491 5.933 0.264 0.563 0.563
A41– A48 0.505 19.545 0.548 0.563 0.563
A49– A52 0.100 0.159 0.100 0.111 0.111
A53 – A54 0.100 0.151 0.151 0.111 0.111
A55 – A58 0.100 10.127 0.158 0.196 0.196
A59 – A66 0.520 7.320 0.594 0.563 0.563
A67 – A70 0.399 3.812 0.341 0.391 0.391
A71 – A72 0.535 18.196 0.608 0.563 0.563

Total Weight (lb) 369.654 6818.670 388.630 389.334 389.334

3.2.2 Optimization of 120-bar Dome-Shaped Truss Structure
Figure 4 and  Figure 5 illustrate a dome-shaped truss structure consisting of 120 members and 49
nodes. 12 pin supports were assigned at node 38 to node 49. Vertical loads with magnitudes of 13.49
kips, 6.744 kips, and 2.248 kips were applied at node 1, nodes 2 to 14, and the remaining unsupported
joints,respectively.The modulus of elasticity of the truss material wasset to30,450 ksi and the density
of the material was set to 0.288 lb/in³. The displacements of each node in the structure were limited to
a maximum of 0.1969 inches along all three axes: x-axis, y-axis, and z-axis. Allowable axial stress on
each member was set according to the Allowable Stress Design (ASD) guidelines by AISC (1989)
(AISC, 1989). Allowable tensile stress is outlined in equation (7) and allowable compressive stress is
outlinedin equations (8) and (9).

88\* MERGEFORMAT ()

for
λ i≥Cc

99\* MERGEFORMAT ()

for 

λ i<C c

1010\* MERGEFORMAT ()

Here,  E = modulus of elasticity of material;  F y = yield stress of material;  C c=√2π2E ¿F y = the
slenderness ratio dividing the elastic and inelastic buckling regions; λ i=k Li /r i = slenderness ratio of
member;  k  = effective length factor (for both end pin supported member,  k=1);  Li = length of the
member;  and  ri =  radius  of  gyration  of  the  member.  In  this  simulation,  the  members  were
consideredto  be  circular  solids.  Themaximum slenderness  ratio  was  limited  to  300 for  members

ICCESD 2024_0119_9



7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh

subjected to tensile stress and to 200 for members subjected to compressive stress. For all members,
0.775  i n2 and 20  i n2were assigned as minimum cross-sectional area and maximum cross-sectional
area, respectively. 

Figure 4: Plan view of 120 bar dome-shaped truss structure. Source: Kaveh (2017)

Figure 5: Side view of 120 bar dome-shaped truss structure. Source: Kaveh (2017)

Table 5 illustrates the influences of PSO algorithm parameters, including the number of particles,
cognitive coefficient c1 and social coefficient c2, and inertia weight w  on the simulation runtime, the
weight of the structure, and the number of iterations required to achieve the minimum weight. The
table indicates that an increase in the number of particles up to 50 particles led to an improved result
and  any  further  increase  showed  no  significant  improvement;  however,  there  was  a  somewhat
proportional increase in simulation runtimes. The influence of cognitive coefficient (c₁) and social
coefficient (c₂) on the structure's weight didn’t follow a specific pattern. Nevertheless, the minimum
weights were achieved when both c₁ and c₂ were within the ranges of 0.8 to 1.0 and 2.0 to 3.0,
respectively. It is noteworthy that the range of 2.0 to 3.0 required more than twice the number of
iterations compared to the range of 0.8 to 1.0 to attain similar results. The table also indicates how
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inertia weight (w) influenced the optimal solution. It reveals that as  w  increased up to 0.8, better
solutions were achieved. Nevertheless, any further increase in  w  resulted in a departure from the
model's best solution. Based on these observations, the optimal values for the algorithm parameters
were chosen as follows:  c1 = 0.8,  c2 = 0.8,  w  = 0.8, and the number of particles = 50 for the final
optimization of the truss structure. 

Initially, the weight of the structure was around 86,000 lb. After the optimization, the weight of the
optimized structure decreased to 31,974.9 lb, signifying a substantial 62.82% reduction from its initial
weight.  The  results  obtained  through  the  PSO method  in  this  article  exhibited  a  slightly  better
resultthan those found by previous researchers mentioned in Error: Reference source not found. 

Table 5: Influence of the PSO algorithm parameters on optimization results for the 120-bar dome
truss

Influence of Number of Particles Influence of c1 and c2 Influence of w

Number
of

Particles

Weight
(lb)

Runtime
(sec)

c1 and
c2

Weight
(lb)

Iteration for
Converge to

Solution w Weight
(lb)

Iteration
for

Converge to
Solution

5 34570.8
1 28 0.0 67455.48 74 0.0 87013.57 33

10 32170.8
5 57 0.1 42396.91 94 0.1 89225.17 32

15 33571.8
5 85 0.2 36732.30 134 0.2 86394.78 71

20 32050.4
7 115 0.4 32865.75 290 0.4 58574.88 101

25 32006.6
4 145 0.6 33478.04 285 0.6 33420.46 288

30 32030.1
5 172 0.8 32028.04 280 0.8 31977.44 433

35 32085.0
0 201 1.0 32088.10 364 1.0 32295.89 837

40 32043.8
3 226 1.5 33408.24 400 1.5 32573.26 1378

50 31999.3
1 288 2.0 31974.92 778 2.0 33499.93 1081

60 31983.1
7 347 3.0 32086.12 1860 3.0 35333.30 1092

80 31974.1
9 460 4.0 33649.42 2801 4.0 37349.52 26

Table 6: Optimization results for 120-bar dome-shaped truss structure

Element
Group

Optimal cross-sectional areas (in2)

This Article Kaveh
(2017)

Kaveh et al.
(2013)

Talatahari
et al. (2013)

Kaveh &
Mahdavi
(2014)

Kaveh et al.
(2017)

Particle
Swarm

Optimization
(PSO)

Charged
System

Search (CSS)
Algorithm

Improved
Ray

Optimization
(IRO)

Algorithm

Multi-Stage
Particle
Swarm

Optimization
(MSPSO)

Colliding
Bodies

Optimization

Vibrating
ParticlesSyste

m (VPS)

1 - (A1 ¿ 1.952 3.027 3.0252 3.024 3.027 3.0244
2 - (A2 ¿ 15.317 14.606 14.835 14.780 15.172 14.754
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3 - (A3¿ 5.485 5.044 5.114 5.057 5.234 5.079
4 - (A4¿ 2.219 3.139 3.131 3.136 3.119 3.137
5 - (A5¿ 9.207 8.543 8.404 8.483 8.104 8.483
6 - (A6 ¿ 5.170 3.367 3.332 3.310 3.417 3.301
7 - (A7¿ 1.853 2.497 2.499 2.498 2.492 2.496

Weight (lb) 31974.9 33,251.9 33,256.5 33,251.2 33,286.3 33,249.9

4. CONCLUSIONS
This  article  presents  OpenSeesPy,  a  Python  interpreter  designed  for  one  of  the  widely  utilized
structural analysis modules known as OpenSees. A comparative analysis was conducted between the
structural analysis outcomes obtained through OpenSeesPy and those derived from another widely
used structural analysis software named StaadPro. The differences in results between these software
applications were minimal, which confirms the effectiveness of the OpenSeesPy framework in solving
three-dimensional truss structures. 

This paper also discussed the application of the Particle Swarm Optimization (PSO) algorithm in the
optimization of truss structures and provided a necessary discussion of its processes. The algorithm
was tested for the optimization of two 3-dimensional truss structures. In the case of the 72-bar spatial
truss  structure,  the  algorithm  showed  similar  results  compared  to  outcomes  obtained  by  other
researchers employing different optimization methods. However, for the 120-bar dome-shaped truss
structure, there was a slight improvement in the outcomes achieved by the algorithm. Furthermore, the
effects  of  different  parameters  within  the  Particle  Swarm  Optimization  (PSO)  algorithm  on  the
optimized results of the structures were also studied. The optimization of both structures indicated
that the most favorable outcomes could be obtained when the cognitive coefficient (c₁) and social
coefficient (c₂) were within the range of 0.8 to 1.0, the inertia weight (𝑤) was equal to 0.8, and the
number of particles was equal to 50. One notable advantage of employing the PSO algorithm was its
simplicity and few number of parameters within the algorithm to calibrate the model. Furthermore,
due to fast convergence towards the solution, the simulation runtime was also low. The effectiveness
and simplicity of the PSO algorithm, combined with its fast convergence rate, make it a strong option
when compared to other optimization methods. 

In future research, it would be interesting to see if the PSO algorithm is applicable to optimization of
even larger  and more complex structures  with numerous constraints  in  the  construction industry.
Additionally,  exploring  the  combination  of  various  optimization  methods  at  different  stages  and
portions of the structure could be an intriguing study.
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