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ABSTRACT
Rainfall  is  a  significant  climatic  parameter  that  is  often used as  a  crucial  input  for  hydrological
analysis  and  modeling  for  the  effective  management  of  water  resources.  Accurate  and  reliable
prediction  of  rainfall  is  essential  for  the  design  of  hydraulic  structures  and  the  development  of
decision-making frameworks for  different  water  resource projects,  agricultural  expansion,  climate
change studies, and disaster prevention schemes. Recently, deep learning and machine learning-based
artificial intelligence (AI) techniques have gained significant popularity among researchers for the
prediction of  rainfall,  as they are able to capture the underlying non-linear relationships between
inputs and outputs. In the past, various AI techniques, including artificial neural networks (ANN),
support  vector  machines  (SVM),  and  genetic  programming  (GP),  have  been  used  for  rainfall
prediction across various regions all over the world. Although these methods have been improved
over the years to achieve enhanced performance in rainfall prediction, their limitations continue to
exist. Therefore, the current study explores a long short-term memory (LSTM) network-based deep
learning approach for the prediction of rainfall, considering its inherent suitability for time-series data.
The LSTM networks are a type of recurrent neural network (RNN) that is capable of learning order
dependence in sequence prediction problems and offers a solution to the vanishing gradient problem
present in traditional RNNs. In addition to the LSTM network-based deep learning model, two other
AI models, namely ANN and SVM, are developed in order to prove the efficiency of the LSTM
network-based deep learning approach for the enhanced prediction of rainfall. A large dataset of the
monthly values of various hydrometeorological variables, including rainfall, temperature, humidity,
windspeed, and cloud cover, for more than a 66-year period (1956–2021) is used as the input to
predict the one-month ahead monthly rainfall for Sylhet and Srimangal stations in the northeast region
of Bangladesh. The performance of each of the aforementioned models is assessed based on various
model performance evaluation criteria, including root mean squared error (RMSE), mean absolute
error (MAE), and coefficient of determination (R2). The results indicate that the LSTM network-
based deep learning approach gives enhanced prediction of rainfall and accordingly outperforms the
individual  ANN and  SVM techniques  in  terms  of  prediction  accuracy  based  on  different  model
performance criteria. Thus, the study concludes that the LSTM network-based deep learning approach
could  be  a  viable  technique  for  the  accurate  prediction  of  rainfall  in  the  northeast  region  of
Bangladesh and could be applicable to other similar areas.
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1. INTRODUCTION
Rainfall is the paramount hydrometeorological variable due to its copious scope in and around many
domains. It is required to be incorporated as one of the key considerations in designing many systems
ranging  from irrigation  to  national  development.  Various  water  resources  management  schemes,
agricultural strategies, hydrologic modeling and simulation projects, and disaster mitigation programs
consider it quite imperative in their decision-making process. Hence, the prediction of rainfall can in
no way be  considered  a  mere  part  of  weather  forecasting.  Rather,  it  remains  a  critical  research
problem  in  the  face  of  the  rising  complexity  of  the  meteorological  and  environmental  systems
imposed by the impact of climate change. 

Bangladesh is one of the most vulnerable countries to long-term climate risk (Islam et al., 2022). The
history of prominent and frequent visits by a number of natural hazards, mostly of hydroclimatic
nature, and the consequent impact on the people and economy are very likely to account for that
(Karim, 1995). Furthermore, the geographic location of Bangladesh is also responsible for its disaster-
prone nature and remarkable sensitivity towards climate change (Brouwer et al., 2007). Bangladesh is
located at the lowermost part of the Ganges-Brahmaputra-Meghna (GBM) basin with an extensive
drainage area, and so it is responsible for draining a huge amount of water through its landscape to the
Bay of Bengal. Therefore, it is very crucial to look for better ways to predict rainfall in order to better
prepare for various rainfall-instigated extremities in Bangladesh. 

Rainfall is essentially condensed water from the atmosphere and is affected by many meteorological
and atmospheric variables. Due to the inherent uncertainty and its stochastic nature, it is really hard to
model it with comparable performance through a physics-based model. Consequently, the prediction
of rainfall in the literature is primarily based on data-driven models. At the primary stage, statistical
models and various time series models were the key resort for the researchers to estimate rainfall.
Many time series modeling techniques remain popular even in very recent  times. Although these
methods  were  developed over  time,  their  limitations  continue  to  exist.  Recently,  artificial  neural
networks (ANN) have received a considerable attention to be implemented for prediction tasks in the
fields of hydrology and water resources. Past studies have demonstrated the wide application of ANN
in rainfall prediction all over the world (Sahai et al., 2000; Iseri et al., 2005; Hossain et al., 2020). The
convolutional neural network (CNN) is one of the most popular deep ML models with its well-known
capability for image processing, and such a model manifested better results than MLP in predicting
the monthly rainfall in Australia (Haidar & Verma, 2018).

Deep learning models are computationally intensive with better  predictive results  as they include
more than one hidden layer with a  potentially  high number  of  neurons and have grown popular
recently due to the availability of high-performance computation devices in the public sphere. The
very recent trend dictates the implementation of a special type of RNN called LSTM for time series
forecasting, and it has applications from financial to hydrologic forecasting. In a study seeking to
judge the aptness of the LSTM model in comparison with other statistical and ML models, improved
performance was observed for the LSTM model, with no significant variation in performance for the
difference in the number of hidden units (Kang et al., 2020). Billah et al. (2022) used an LSTM model
coupled with principal component analysis (PCA)-based feature selection to predict the daily rainfall
category in Bangladesh. The model performed significantly better than six other classifier models by
producing  more  than  97%  accuracy.  In  another  study  comparing  both  the  stacked  LSTM  and
bidirectional  LSTM with  four  other  machine  learning  algorithms,  it  was  evident  that  the  LSTM
models  showed superior  performance  in  the  prediction  of  hourly  rainfall  (Barrera-Animas  et  al.,
2022). Furthermore, a recent review study on rainfall prediction by various machine learning models
indicates that the LSTM model is regarded as possessing the best performance for rainfall prediction
(Latif et al., 2023). Some studies even tried various modified versions of the typical LSTM models
and demonstrated their prospects for further improved performance (Poornima & Pushpalatha, 2019).
On the whole, the aim of the current study is to explore a long short-term memory (LSTM) network-
based  deep  learning  approach  for  the  enhanced  prediction  of  rainfall,  considering  its  inherent
suitability for time-series data.
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2. METHODOLOGY

2.1 Study Area and Datasets
The current study focuses on the rainfall prediction of two stations, namely Srimangal and Sylhet,
located in Moulvibazar and Sylhet districts of Bangladesh, respectively, as shown in Figure 1. These
two stations are located at the northeast end of Bangladesh. The study region is located at the lower
end of the Meghna basin and is usually prone to heavy rainfall during the monsoon and pre-monsoon.
The rainfall in this area is particularly of significant interest due to a few reasons. This area is the
major host of the cultivation of tea, and tea is one of the noteworthy cash crops, markedly contributing
to  the  national  economy.  Rainfall  affects  the  production  of  tea  both  from  an  agricultural  and
socioeconomic perspective  (Farukh et al., 2020; Rahman, 2022). Furthermore,  Hasan et al. (2012)
found a link between flood occurrences in other areas of the country and the exceedance of the normal
yearly rainfall in this area. In addition, this area itself is prone to flash floods. Again, this is the region
in  Bangladesh  that  accommodates  many  wetland  ecosystems,  locally  named  ‘haors’.  The  huge
biodiversity supported by these ecosystems is not only important for local environmental stability but
also too deeply rooted for the overall ecological balance of Bangladesh (Jakariya & Islam, 2017).

Figure 1: Selected rainfall stations in northwestern Bangladesh on the map

The hydrometeorological dataset with variables including rainfall, dew point temperature, temperature
(maximum, average, and minimum), pressure (mean sea level and station level), cloud amount, wind
speed  and  direction,  bright  sunshine  hour,  relative  humidity,  present  weather,  past  weather,  and
shapefiles was collected from the Bangladesh Meteorological Department (BMD). The provided data
have data ranges of variable periods based on availability. The dataset for the teleconnection climate
indices,  namely  Nino  3.4,  Dipole  Mode  Index  (DMI),  Pacific  Decadal  Oscillation  (PDO),  and
Southern Oscillation Index (SOI), was obtained from the website of the Physical Sciences Laboratory
(PSL) of the National Oceanic and Atmospheric Administration (NOAA).

2.2 Data Preprocessing
There were thirteen hydrometeorological  variables  in  the  originally  collected dataset  from BMD,
among which twelve variables contained only numeric values. The data for a particular variable was
provided inside a separate file in which the data for different stations were arranged in tabular form.
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The format was similar for the four climate teleconnection indices. Each of the data tables had rows
and columns pointing out the corresponding year and month, respectively, for a particular data point.
First of all, the matrix format datasets were converted to timeseries data for each of the variables
separately for the two stations. The prevailing wind direction (WD ) was the only categorical variable,
and it encoded the sixteen-point wind directions with corresponding angles in degrees. This variable,
along with the prevailing wind speed, was replaced with two numeric variables, namely the north (
W Snorth ¿ and east component (W Seast ¿ of the prevailing wind speed, using the formula shown in
Eqs. (1)- (2).

W Snorth=(WS)(cosWD)                                        (1)
W Seast=(WS )(sinWD)                                 (2)

Figure 2: Correlation matrices of different variables for (a) Sylhet and (b) Srimangal stations

Then, the timeseries for different variables for a particular station were combined in a table in which
each column represents a variable and the rows represent months. In this process, it was found that the
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data range for all the variables doesn’t match. Hence, data points only within the selected range (for
Srimangal station: 1950-01 to 2022-01 and for Sylhet station: 1956-01 to 2022-01) were extracted.
Furthermore, since two timeseries variables, namely average sunshine hours and average visibility,
had a significantly low number of records, they were removed from the data table. Since there were
many missing values in the dataset for the wind speed component variables at Srimangal station and
below 10% for all  other variables,  the missing values  were imputed using the month-wise mean
method. In this approach, the mean value was computed for a particular month of a specific variable,
and whenever any missing value corresponding to that month appeared, it was filled in with that mean
value. 

Afterwards, the Pearson’s correlation coefficient (PCC) statistic was used to develop the correlation
matrix for the dataset of each of the stations. PCC was chosen for feature selection as it indicates the
intensity of the association between two variables. This quantity can be obtained by dividing the
covariance of two variables by the product of their standard deviations. From the correlation matrix
for Srimangal station as shown in Figure 2(b), it can be seen that the two teleconnection indices,
namely DMI and SOI, had absolute PCC values less than 0.1 with respect to the target variable (one-
month ahead rainfall), and since such a value is considered too low to have any kind of association,
these  two variables  were  removed from the  dataset.  Under  this  criterion,  the  east  component  of
prevailing wind speed was removed from the dataset along with DMI and SOI for Sylhet station (as
shown in Figure 2(a)). In addition, some other variables have such high absolute PCC values (greater
than 0.9) among themselves that it indicates that one of the variables in the pair is very likely to be
explained by another and is not going to contribute significantly as an independent predictor, and so
one of them was dropped. In this consideration, two more variables, namely average cloud amount
and average dewpoint temperature, were eliminated, leaving 10 final predictor variables for Sylhet
station,  while  further  elimination  of  two  variables,  namely  average  dewpoint  temperature  and
minimum temperature, left 11 predictor variables for Srimangal station.

From this dataset composed of only the predictor variables and the target variable, a small portion
(20%) was held out as test data, and the remaining 80% was separated for model development. The
numbers of data in the training and testing set were 691 (From 1950-01 to 2007-07) and 173 (From
2007-08 to 2021-12) respectively for Srimangal station and 633 (From 1956-01 to 2008-09) and 159
(From 2008-10 to 2021-12) respectively for Sylhet station. Finally, the data variables were scaled
based on the training dataset using Eq. (3), and the same scaling parameters were applied to the test
set.

x i(sca led )=
x i−xmin
xmax−xmin

                                      
(3)

Here, for a variable  x, the scaled value of  ith element is  x i(scaled) and it is obtained by dividing the
difference of  ith element (x i¿ and the minimum value element (xmin¿ to the difference between the
maximum value element  (xmax) and  the minimum value element (xmin¿ . Since the LSTM model
demands the input dataset to be in a particular shape with the inclusion of a lookback sequence, the
dataset was prepared in that three-dimensional format from the existing 2D condition by zipping 12
lookback samples (accounting for the preceding one-year) for each of the inputs.

2.3 LSTM Model
LSTM is a further developed version of the traditional RNN with its inherent nature to utilize the
sequential structure of time series data for improved performance (Hochreiter & Schmidhuber, 1997).
The feature that makes it distinct from an ordinary RNN is its encompassed structure of cell state that
can account for the long-term dependency in the data sequence.
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The basic unit of an LSTM layer is the LSTM cell, which updates a total of six parameters within its
structure and is composed of three gates namely the forget gate, the input gate, and the output gate.
The forget gate determines what portion of the memory information is supposed to be retained from
the linear combination of the current cell input (X t) and the hidden state output from the previous cell
(ht−1)  and a corresponding bias  value with its  parameter  f t by applying a  sigmoid activation as
expressed in equation (4). In this equation and the subsequent ones W  represents the corresponding
weight  vectors  and  b represents  the  corresponding  biases  with  their  representative  subscripted
notations. The value for f t is within the range from 0 to 1 and 0 represents complete elimination while
1 represents complete retention.

f❑t=σ (W f ∙ [X t , ht−1 ]+b f )                                       
(4)

Figure 3: Schematic architecture of an LSTM cell

Then the input gate with its parameter it and candidate cell ( ~C t ) both dictate the amassment of new
information in the cell  state. The computation of   it involves the sigmoid activation of the linear
combination of X t  and ht−1 as shown in Eq. (5) while the computation of ~C t  involves the hyperbolic
tangent activation of the linear combination of X t  and ht−1 as in Eq. (6). From these two parameters,
the new cell state parameter (C t) gets updated by summing the product of the previous cell state and
the forget parameter and the product of the input parameter and the candidate cell as shown in Eq. (7).

it=σ (W i ∙[X t , ht−1]+bi)                              (5)
~C t=tan h(W C ∙[X t ,h t−1]+bC )                              (6)
C t=f t×C t−1+it×

~C t                           (7)

Lastly, the output gate determines the portion of information exits as the output with its parameter o t. 
The final hidden state output (ht) results from the product of  o t and the hyperbolic tangent-activated 
cell state as in equation (9).

o t=σ (W o∙[X t ,h t−1]+bo)                      (8)
ht=o t× tanh (C t)                              (9)

(a)
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(b)
Figure 4: Implemented model architectures: (a) LSTM (b) MLP

An LSTM layer typically consists of a series of such LSTM cells in which each of the cells takes the
cell state and hidden state from the previous cell, if  available, along with the actual input. In the
LSTM model used in this study, two such LSTM layers, followed by the input layer, were used. The
first layer of these two returns the last output in the sequence, and the second one returns the total
sequence. Each of these LSTM layers is then followed by a batch normalization layer and a dropout
layer, respectively. The inclusion of batch normalization is due to its imparted advantages, such as the
improvement of test accuracy resulting from the effect of regularization and the steadier propagation
of gradients.  On the other hand, the concept  of  the dropout layer involves the dropping of some
random units and their corresponding connections in an attempt to reduce the overfitting phenomenon
(Srivastava et al., 2014). The dropout fraction of the model was set to 0.50 for the LSTM-to-LSTM
layer connection and 0.20 for the LSTM to output layer connection. Altogether, the overall model
structure can be represented by Figure 4(a). The implementation of this model will  be performed
using the Keras API in the TensorFlow environment of Python.

2.4 ANN Model
The  imitation  of  the  mechanism of  transmitting  and  processing  information  through  a  complex
network in a typical human brain led to the development of an artificial neural network (ANN) and
such naming.  The building block of such a computational  tool  is  a neuron that  simply sums the
weighted  products  of  the  inputs  with  an  additional  bias  value.  To  introduce  nonlinearity  in  an
otherwise linear structure, the neurons are followed by activation functions in a network. In a basic
multilayer perceptron (MLP) model, a hidden layer comprises such neurons and is put between an
input and an output layer. The neurons of a layer are interconnected with those of the preceding and
following layers with weighted connections. This study uses an MLP model with one hidden layer
(Figure 4(b)) and the hyperparameters obtained through the random search algorithm are the number
of hidden neurons, activation function, batch size, and learning rate. This model also uses the same
environment as that of the LSTM model and includes dropout regularization and batch normalization.

2.5 Activation Functions
The nonlinear activation function serves the useful purpose of imparting the capability of capturing
the nonlinearity of the modeled function in neural networks. The sigmoid or logistic function (σ ) with
its well-known S-curved shape maps the input values in the range from 0 to 1 by using Eq. (10).
Contrarily, although the hyperbolic tangent activation function ( tanh) as depicted in Eq. (11) also has
an S-shape, it maps the inputs in the range from -1 to 1 as the output. Apart from them, the rectified
linear unit (relu) as shown in Eq. (12) maps all the negative inputs to 0 but keeps the positive values
as it is.

σ (x)= 1
1+e− x                                       (10)

tanh (x)=(ex−e−x)
(e x+e−x)

                                            (11)

relu (x)=max(0 , x)                                                         (12)

2.6 Adam Optimization
The adaptive moment estimation (Adam) optimization algorithm presented by Kingma & Ba (2015) is
a  modern  alternative  to  the  stochastic  gradient  descent  algorithm.  This  algorithm  combines  the
benefits  of  both  the  moment-based  optimization  and  root  mean  square  propagation  (RMSProp)
algorithm. The momentum update imparts speed to the optimization by increasing the learning rate if
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the gradient matches the direction of the previous ones, while updating the learning rate based on
steepness provides adaptability. The optimization parameters such as β1,  β2, and ϵ  have been used as
the defaults given in the corresponding Keras class, and the only parameter tuned is the learning rate.
This optimization was used for training both the LSTM and ANN models in this study. The epoch and
early stopping were set at 2000 and 50, respectively.

2.7 SVR Model
With the  necessary  adjustments  in  the  typical  algorithm of  a  support  vector  machine,  it  can  be
successfully equipped with the ability to perform regressions, and such a model is called a support
vector regression model. The three kernels explored in the grid search are the radial basis function
(RBF), the polynomial kernel of third degree, and the sigmoid kernel. The parameter C controls the
error margin in such a way that larger C values ensure a smaller error margin and vice versa. The
gamma parameter is specifically needed for the RBF kernel as it defines the extent of curvature of the
boundary. The ‘scikit-learn’ package in Python was used to employ this model.

2.8 Model Evaluation Metrics
A wide variety of evaluation metrics has been used for comparing the performances of the models in
various papers dealing with hydrologic prediction problems (Latif et al., 2023). This paper uses such
five metrics given in Eqs. (13)-(17), namely mean squared error (MSE), root mean squared error (
RMSE),  mean  absolute  error  (MAE),  Nash-Sutcliffe  efficiency  (NSE),  and  coefficient  of
determination (R2) due to their wide acceptance. 

MSE=1
n∑i=1

n

( y ai− y pi)
2                                              13)

RMSE=√ 1n∑i=1
n

( yai− y pi )
2                                           (14)

MAE=1
n∑i=1

n

|yai− y pi|                                      (15)

NSE=1−
∑
i=1

n

( yai− y pi )
2

∑
i=1

n

( yai− ya )2
                                            (16)

R2=¿¿                                    (17) 

Where, the actual and predicted data points are represented with yai and y pi respectively,  ya  and y p
are the mean of the actual and predicted data series respectively, and there are n number of elements
in a data series.

3. RESULTS AND DISCUSSION
From the 300 tuning runs for the LSTM and MLP models and the 3000 runs for the SVR model, the
random grid search  operation  with  4-fold cross-validation selected the best  models  based on  the
minimum MSE values, and the hyperparameters are listed in Table 1. The optimal hyperparameters
are completely different for the same model at differing stations. For example, the optimum batch size
chosen for the LSTM model in Srimangal is 16, while it is 64 for the Sylhet station. On the other side,
the chosen number of LSTM units in each of the two LSTM layers is 8 for the LSTM model in
Srimangal, and this number doubles to 16 for the Sylhet station. All these optimum hyperparameters
were used along with the preselected set of model parameters, as mentioned before, to build each of
the final models. 
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Table 1: Selected hyperparameters for different models

 Station Model Selected Hyperparameters
Sr

im
an

ga
l

LSTM Batch size: 16, Learning rate: 0.009099489329724531, Number of LSTM units: 8
MLP Activation function: tanh, Batch size: 32, Learning rate: 0.020612697, Hidden units: 4
SVR C: 0.3988186931209492, gamma: 0.7358779785637147, Kernel: RBF

Sy
lh

et LSTM Batch size: 64, Learning rate: 0.025913875649481007, Number of LSTM units: 16
MLP Activation function: relu, Batch size: 64, Learning rate: 0.002057143, Hidden units: 32
SVR C: 2.1546248509014165, gamma: 0.8781346547028155, Kernel: RBF

In order to get a visual overview of how the model prediction goes with the actual timeseries, the
timeseries plots of three models are plotted alongside the observed timeseries for each of the two
stations in Figure 5. The deviations of the predicted time series from the actual one create a visually
perceptible notion of the predictive performance. The variety of paths chosen by different models
reflects their inherent differences. Although various models predict with variable accuracy, none of
them  can  be  stated  as  successful  in  predicting  extreme  peaks,  as  the  prediction  line  is  spotted
significantly below that of the actual one as visible from the figure. 
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Figure 5: Actual and predicted rainfall for (a) Srimangal station and (b) Sylhet station using LSTM,
MLP and SVR models in the testing phase 

Furthermore, the scatterplots of predicted and observed one-month ahead monthly rainfall as shown in
Figures 6 and 7 not only provide a way of comparison for training and testing but also a way to learn
about differences from model to model. All the scatterplots establish that the prediction trendline is
always slanted with a slope less than the perfect prediction condition, be it for training or testing. And
part of this phenomenon can be attributed to the extreme data points that are underpredicted by quite a
margin from the actual values, as confirmed by the time series plots. Again, the patterns of the data
points from the training to testing do not disagree that largely indicate any overfitting or underfitting.
Moving from the visual intuition to the numeric, Table 2 lists all five-evaluation metrics computed on
the training and testing datasets for two stations. For the two error measures,  MAE and RMSE, the
values range from 73.85 mm to  139.93 mm and from 109.92 mm to 194.79 mm, respectively. The
values of the training and testing metrics for the same model are within reach since MAE differs by a
maximum of 12.7 mm and RMSE by 18.02 mm. Similarly, for the fitness measures NSE and R2, the
values range from 0.48 to 0.75 and from 0.53 to 0.76, respectively. 

Table 2: Evaluation metrics for different rainfall prediction models

Metric
Srimangal Sylhet

LSTM MLP SVR LSTM MLP SVR

Tr
ai

ni
ng

MAE (mm) 73.85 94.85 89.65 110.25 130.41 128.50
MSE (mm2) 12081.48 16884.54 15759.53 27893.64 34478.13 31270.02
RMSE (mm) 109.92 129.94 125.54 167.01 185.68 176.83
NSE 0.68731 0.55877 0.58817 0.75445 0.69781 0.72593
R2 0.68914 0.57908 0.60436 0.76018 0.69912 0.73096

Te
st

in
g

MAE (mm) 86.55 104.42 97.45 115.06 139.93 139.48
MSE (mm2) 16369.61 18712.14 17101.73 32217.54 37942.87 35955.51
RMSE (mm) 127.94 136.79 130.77 179.49 194.79 189.62
NSE 0.56166 0.48243 0.52697 0.70963 0.64775 0.6662
R2 0.56229 0.52621 0.53531 0.72106 0.64865 0.67567

As can also be seen from Figure 5, LSTM predictions for both stations very closely follow the actual
path for very low values at troughs and medium values with few exceptions. In opposition, the MLP
and SVR models overpredict the troughs and are spread around the actual path by a visible left or
rightward shift for moderate values. In addition, since the data points for the Srimangal station got
somewhat  stuck  in  the  lower  half  of  the  scatterplots  and  a  comparatively  balanced  pattern  was
obtained for the Sylhet station (Figure 6), the latter is supposed to yield better metric values. This
shortcoming of the models for the Srimangal station can be attributed to the dataset itself, as the data
points were mostly concentrated at lower values and there were a small number of training data points
for learning extreme values.
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Figure 6: Actual and predicted rainfall scatterplots for (a) Srimangal station and (b) Sylhet station
using LSTM, MLP and SVR models in the training and testing phases

As can be seen from Table 2, the least value for each of the three error measures in both stations was
obtained for the LSTM models both on training and testing data.  The LSTM model  reduced the
testing MAE by 17.11% and 11.19% for the Srimangal station and by 17.77% and 17.51% for the
Sylhet station, respectively, compared to the MLP and SVR models. The improvement in RMSE
values by the LSTM model follows a similar trend, with decreases of 5% and 0.63% for the Srimangal
station and 7.85% and 5.34% for the Sylhet station, respectively. Likewise, the LSTM model retains
its superiority in performance by showing the maximum values of the two fitness measures, namely
NSE and R2. In Srimangal station, the NSE and R2 values are boosted by 16.42% and 6.86% with
LSTM than that of MLP and by 6.58% and 5.04% with SVR. Similarly, in Sylhet station, the LSTM
model increases the NSE value by 9.55% compared to that of MLP and by 6.52% compared to that of
SVR. In addition, the R2 values rise by 11.16% and 6.72% for LSTM compared to MLP and SVR,
respectively, in this station. 

Since LSTM models produce more worthy values  for both error  and fitness  measures,  it  can be
unequivocally dictated that the best model outperforms the other two competitor models. Moreover,
since the improvements effected by LSTM are of lesser magnitude for SVR than MLP, SVR is found
to be the closest competitor, being the second-best model. Comparing the performance metrics for the
two stations, it is evident from Table 2 that the models generate comparatively lower error values for
the Srimangal station than for the Sylhet station. But a surprisingly similar case is apparent for the
fitness measures as well, as we get to see lower values of NSE and R2 for Srimangal station. Thus, for
any of the two stations, the comparatively desirable values of either error or fitness measures are
obtained, and no station proves to show better performance in terms of all evaluation measures.
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4. CONCLUSIONS
The  current  study  implements  a  long  short-term  memory  (LSTM)  network-based  deep  learning
approach for the prediction of rainfall in two rainfall stations in the northeastern region of Bangladesh
and compares its performance with two other proven machine learning models, namely MLP and
SVR. A multivariate approach using the combination of hydrometeorological variables and climate
indices as predictors  has  been adopted here  after  a systematic feature selection process.  The key
conclusions found from this study are:
 The LSTM model captures the rainfall values at low and medium values more satisfactorily than

the SVR and MLP models. However, none of the models can predict extreme rainfall values with
reasonable accuracy.

 The LSTM models suggested for the two stations well surpass the performance exhibited by the
other two models according to all five model evaluation criteria.

 The  models  perform  better  on  Srimangal  station  data  based  on  error  measures,  while  they
perform better on Sylhet station data in terms of fitness measures.

 Since the values of evaluation metrics follow the same trend for both stations, the results of this
study may be extendable to other stations located in northeastern Bangladesh. 

It is worth mentioning that there is still the opportunity to try various other combinations of predictor
variables in the current study and the univariate approach to achieve further improved performance,
especially to capture the extreme values and simulate similar studies in other regions of Bangladesh.
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